锡粉促进下α-三氟甲基高烯丙基酰肼的合成
收稿日期: 2019-01-07
修回日期: 2019-01-29
网络出版日期: 2019-02-22
基金资助
国家自然科学基金(Nos.21861033,21462037)资助项目.
Tin Powder Promoted Synthesis of α-Trifluoromethyl Homoallylic Hydrazides
Received date: 2019-01-07
Revised date: 2019-01-29
Online published: 2019-02-22
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21861033, 21462037).
探索了在布朗斯特酸和路易斯酸作用下,以1,4-二氧六环为溶剂,由三氟丙酮酸乙酯、酰肼、烯丙基溴和锡粉在回流条件下一锅法合成α-三氟甲基高烯丙基酰肼的方法.该方法避免了使用有毒的有机锡试剂,并且操作简单,反应条件温和,以良好的收率得到其相应的产物.
关键词: 一锅法; 锡粉; 三氟丙酮酸乙酯; α-三氟甲基高烯丙基酰肼
刘佳欣 , 黄丹凤 , 王小平 , 宗吴中 , 苏瀛鹏 , 王克虎 , 胡雨来 . 锡粉促进下α-三氟甲基高烯丙基酰肼的合成[J]. 有机化学, 2019 , 39(6) : 1767 -1775 . DOI: 10.6023/cjoc201901007
An efficient multicomponent one-pot reaction was developed for the synthesis of α-trifluoromethyl homoallylic hydrazides from the reactions of ethyl trifluoropyruvate, hydrazides and allylic bromide with tin powder in the presence of Brønsted and Lewis acid in 1,4-dioxane under reflux. The method avoids the use of toxic stannanes and allows easy operation. The reaction proceeds smoothly under mild reaction conditions to give the corresponding products in good yields.
[1] (a) Ke, S.; Sun, T.; Liang, Y.; Yang, Z. Chin. J. Org. Chem. 2010, 30, 1820 (in Chinese).(柯少勇, 孙婷婷, 梁英, 杨自文, 有机化学, 2010, 30, 1820.)
(b) Cui, Z.-N.; Wang, Z.; Li, Y.; Zhou, X.-Y.; Ling, Y.; Yang, X.-L. Chin. J. Org. Chem. 2007, 27, 1300 (in Chinese).(崔紫宁, 王振, 李映, 周心玉, 凌云, 杨新玲, 有机化学, 2007, 27, 1300.)
(c) Aubin, S.; Martin, B.; Delcros, J.-G.; Arlot-Bonnemains, Y.; Baudy-Floc'h, M. J. Med. Chem. 2005, 48, 330.
(d) Huang, R.; Wang, Q. J. Organomet. Chem. 2001, 637, 94.
[2] (a) Wing, K. D. Science 1988, 241, 467.
(b) Wing, K. D.; Slawecki, R. A.; Carlson, G. R. Science 1988, 241, 470.
[3] (a) Vardanyan, R.; Hruby, V. Synthesis of Essential Drugs, 1st ed., Elsevier Science, Maryland Heights, 2006, pp. 110~112.
(b) Mashkovskiy, M. D. Khim.-Farm. Zh. 1976, 10, 3.
[4] (a) Heinzelman, R. V.; Szmuszkovicz, J. Prog. Drug Res. 1963, 6, 85.
(b) Nogrady, T.; Morris, L. J. Med. Chem. 1966, 9, 438.
[5] (a) Grande, F.; Aiello, F.; De Grazia, O.; Brizzi, A.; Garofalo, A.; Neamati, N. Bioorg. Med. Chem. 2007, 15, 288.
(b) Zheng, L.-W.; Wu, L.-L.; Zhao, B.-X.; Dong, W.-L.; Miao, J.-Y. Bioorg. Med. Chem. 2009, 17, 1957.
(c) Lian, S.; Su, H.; Zhao, B.-X.; Liu, W.-Y.; Zheng, L.-W.; Miao, J.-Y. Bioorg. Med. Chem. 2009, 17, 7085.
[6] (a) Todeschini, A. R.; de Miranda, A. L. P.; da Silva, K. C. M.; Parrini, S. C.; Barreiro, E. J. Eur. J. Med. Chem. 1998, 33, 189.
(b) Duarte, C. D.; Tributino, J. L. M.; Lacerda, D. I.; Martins, M. V.; Alexandre-Moreira, M. S.; Dutra, F.; Bechara, E. J. H.; De-Paula, F. S.; Goulart, M. O. F.; Ferreira, J.; Calixto, J. B.; Nunes, M. P.; Bertho, A. L.; Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. M. Bioorg. Med. Chem. 2007, 15, 2421.
[7] (a) Thompson, S. K.; Halbert, S. M.; DesJarlais, R. L.; Tomaszek, T. A.; Levy, M. A.; Tew, D. G.; Ijames, C. F.; Veber, D. F. Bioorg. Med. Chem. 1999, 7, 599.
(b) Khan, K. M.; Shujaat, S.; Rahat, S.; Hayat, S.; Atta-ur-Rahman; Choudhary, M. I. Chem. Pharm. Bull. 2002, 50, 1443.
(c) Ersmark, K.; Nervall, M.; Hamelink, E.; Janka, L. K.; Clemente, J. C.; Dunn, B. M.; Blackman, M. J.; Samuelsson, B.; Åqvist, J.; Hallberg, A. J. Med. Chem. 2005, 48, 6090.
[8] (a) Cui, H.; Xu, Y.; Zhang, Z.-F. Anal. Chem. 2004, 76, 4002.
(b) Kanie, K.; Yasuda, T.; Ujiie, S.; Kato, T. Chem. Commun. 2000, 1899.
(c) Parra, M.; Hidalgo, P.; Barberá, J.; Carrasco, E.; Saavedra, C. Liq. Cryst. 2006, 33, 391.
(d) Yoneya, M.; Takada, S.; Maeda, Y.; Yokoyama, H. Liq. Cryst. 2008, 35, 339.
[9] (a) Licandro, E.; Perdicchia, D. Eur. J. Org. Chem. 2004, 2004, 665.
(b) Majumdar, P.; Pati, A.; Patra, M.; Behera, R. K.; Behera, A. K. Chem. Rev. 2014, 114, 2942.
(c) Flagstad, T.; Petersen, M. T.; Nielsen, T. E. Angew. Chem., Int. Ed. 2015, 54, 8395.
(d) Zhang, W.; Sun, J.; Xu, F.; Zhu, H.; Yue, R.; Zhang, Y.; Niu, F. Chin. J. Org. Chem. 2017, 37, 3191 (in Chinese).(张文婷, 孙健, 徐飞, 朱红, 岳瑞雪, 张毅, 钮福祥, 有机化学, 2017, 37, 3191.)
(e) Wang, Y.; Wang, K.-H.; Su, Y.; Yang, Z.; Wen, L.; Liu, L.; Wang, J.; Huang, D.; Hu, Y. J. Org. Chem. 2018, 83, 939.
(f) Yan, Y.; Zhang, Z.; Wan, Y.; Zhang, G.; Ma, N.; Liu, Q. J. Org. Chem. 2017, 82, 7957.
(g) Flood, D. T.; Hintzen, J. C. J.; Bird, M. J.; Cistrone, P. A.; Chen, J. S.; Dawson, P. E. Angew. Chem., Int. Ed. 2018, 57, 11634.
[10] (a) Gou, B.; Yang, C.; Zhang, L.; Xia, W. Acta Chim. Sinica 2017, 75, 66 (in Chinese).(苟宝权, 杨超, 张磊, 夏吾炯, 化学学报, 2017, 75, 66.)
(b) Hui, R.; Zhang, S.; Tan, Z.; Wu, X.; Feng, B. Chin. J. Org. Chem. 2017, 37, 3060 (in Chinese).(惠人杰, 张士伟, 谭政, 吴小培, 冯柏年, 有机化学, 2017, 37, 3060.)
(c) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
(d) Kirk, K. L. Curr. Top. Med. Chem. 2006, 6, 1447.
(e) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(f) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(g) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(h) Cametti, M.; Crousse, B.; Metrangolo, P.; Milani, R.; Resnati, G. Chem. Soc. Rev. 2012, 41, 31.
[11] (a) Formicola, L.; Maréchal, X.; Basse, N.; Bouvier-Durand, M.; Bonnet-Delpon, D.; Milcent, T.; Reboud-Ravaux, M.; Ongeri, S. Bioorg. Med. Chem. Lett. 2009, 19, 83.
(b) Onnis, V.; Cocco, M. T.; Fadda, R.; Congiu, C. Bioorg. Med. Chem. 2009, 17, 6158.
[12] (a) Xu, Y.; Huang, D.; Wang, K.-H.; Ma, J.; Su, Y.; Fu, Y.; Hu, Y. J. Org. Chem. 2015, 80, 12224.
(b) Wang, J.; Huang, D.; Wang, K.-H.; Peng, X.; Su, Y.; Hu, Y.; Fu, Y. Org. Biomol. Chem. 2016, 14, 9533.
(c) Wang, K.-H.; Wang, J.; Wang, Y.; Su, Y.; Huang, D.; Fu, Y.; Du, Z.; Hu, Y. Synthesis 2018, 50.
[13] Chen, W. J.; Liao, D. H. Chem. World 2006, (5), 285 (in Chinese).(陈文杰, 廖道华, 化学世界, 2006, (5), 285.)
/
〈 |
|
〉 |