研究论文

通过[2,3]-Wittig重排合成烯丙基-甲基-N-泛酸酰胺

  • 夏礼文 ,
  • 赵青 ,
  • 巴梦雨 ,
  • 胡超平 ,
  • 孙默然 ,
  • 杨华
展开
  • a 郑州大学药学院 郑州 450001;
    b 新药创制与药物安全性评价河南省协同创新中心 郑州 450001

收稿日期: 2018-11-05

  修回日期: 2019-01-17

  网络出版日期: 2019-03-08

基金资助

国家自然科学基金(Nos.21372205,21302175)和河南省科技厅基础研究(No.132300410028)资助项目.

A Synthetic Route to Access Allyl-methyl-N-pantothenamide via [2,3]-Wittig Rearrangement

  • Xia Liwen ,
  • Zhao Qing ,
  • Ba Mengyu ,
  • Hu chaoping ,
  • Sun Moran ,
  • Yang Hua
Expand
  • a School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001;
    b Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001

Received date: 2018-11-05

  Revised date: 2019-01-17

  Online published: 2019-03-08

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21372205, 21302175) and the Basic Research Project of Science and Technology Department of Henan Province (No. 132300410028).

摘要

甲基-烯丙基-N-泛酸酰胺(1)具有手性季碳和邻位仲醇结构片段的抗菌剂,可以巧妙通过[2,3]-Wittig重排和钯催化的甲酸还原构建了其分子骨架,以10步反应制备了1.

本文引用格式

夏礼文 , 赵青 , 巴梦雨 , 胡超平 , 孙默然 , 杨华 . 通过[2,3]-Wittig重排合成烯丙基-甲基-N-泛酸酰胺[J]. 有机化学, 2019 , 39(7) : 2035 -2041 . DOI: 10.6023/cjoc201811009

Abstract

The synthetic route of allyl-methyl-N-pantothenamide (1) featuring[2,3]-Wittig rearrangement and palladium catalyzed formate reduction to assemble the requisite quaternary carbon with adjacent secondary alcohol has been reported. Our strategy presents a facile synthetic route to access 1 in 10 steps, which also provide a novel inspiration to construct chiral quaternary carbon via asymmetrical[2,3]-Wittig rearrangement.

参考文献

[1] Clifton, G.; Bryant, S. R.; Skinner, C. G. Arch. Biochem. Bioph. 1970, 137, 523.
[2] (a) Zhang, Y.-M.; Frank, M. W.; Virga, K. G.; Lee, R. E.; Rock, C. O.; Jackowski, S. J. Biolog. Chem. 2004, 279, 50969.
(b) Maršavelski, A. RSC Adv. 2016, 6, 44888.
[3] Hoegl, A.; Darabi, H.; Tran, E.; Awuah, E.; Kerdo, E. S. C.; Habib, E. Biorg. Med. Chem. Lett. 2014, 24, 3274.
[4] Akinnusi, T. O.; Vong, K.; Auclair, K. Bioorg. Med. Chem. 2011, 19, 2696.
[5] Fráter, G. Tetrahedron Lett. 1981, 22, 425
[6] Tsao, K.-W.; Cheng, C.-Y.; Isobe, M. Org. Lett. 2012, 14, 5274
[7] Hiersemann, M.; Lauterbach, C.; Pollex, A. Eur. J. Org. Chem. 1999, 2713.
[8] Hiersemann, M.; Abraham, L.; Pollex, A. Synlett 2003, 1088.
[9] (a) Yang, H.; Sun, M.; Zhao, S.; Zhu, M.; Xie, Y.; Niu, C. J. Org. Chem. 2013, 78, 339.
(b) Sun, M.; Dai, L; Yang, H.; Liu, H.; Yu, D. Chin. J. Org. Chem. 2018, 38, 2443(in Chinese). (孙默然, 代磊, 杨华, 刘宏民, 于德泉, 有机化学, 2018, 38, 2443.)
(c) Zhou, H.; Sun, M.; Cao, Q.; Bai, L.; Xie, Y.; Yang, H. Chin. J. Org. Chem. 2013, 33, 2515(in Chinese). (周航, 孙默然, 曹其伟, 朱明, 白磊阳, 谢阳娜, 杨华, 有机化学, 2013, 33, 2515.)
[10] Marshall, J. A.; Lebreton, J. J. Am. Chem. Soc. 1988, 110, 2925.
[11] (a) Hirokawa, Y.; Kitamura, M.; Maezaki, N. Tetrahedron:Asymmetry 2008, 19, 1167.
(b) Barrett, I. M.; Breeden, S. W. Tetrahedron:Asymmetry 2004, 15, 3015.
[12] Seco, J. M.; Quiñoá, E.; Riguera, R. Tetrahedron:Asymmetry 2001, 12, 2915.
[13] (a) Osamu, T.; Koichi, M.; Takeshi, N. Chem. Lett. 1987, 16, 69.
(b) Fujimoto, K, Nakai, T. Tetrahedron Lett. 1994, 35, 5019.
[14] Diéguez, H. R.; López, A.; Domingo, V.; Arteaga, J. F.; Dobado, J. A.; Herrador, M. M. J. Am. Chem. Soc. 2010, 132, 254.
[15] Hughes, G.; Lautens, M.; Wen, C. Org. Lett. 2000, 2, 107.
[16] Vong, K. K. H.; Maeda, S.; Tanaka, K. Chem.-Eur. J. 2016, 22, 18865.

文章导航

/