一种基于罗丹明类似物的Cys近红外荧光探针
收稿日期: 2018-12-26
修回日期: 2019-02-25
网络出版日期: 2019-03-08
基金资助
国家自然科学基金(No.21572209)、河南省高校科技创新人才计划(No.17IRTSTHN002)及郑州大学大学生创新创业训练计划(No.2018cxcy012)资助项目.
A Novel Rhodamine Analogues-Based Near-Infrared Fluorescent Probe for Cys
Received date: 2018-12-26
Revised date: 2019-02-25
Online published: 2019-03-08
Supported by
Project supported by the National Natural Science Foundation of China (No. 21572209), the Program for Innovative Research Team (in Science and Technology) at University of Henan Province (No. 17IRTSTHN002) and Innovation and Entrepreneurship Training Plan for College Students of Zhengzhou University (No. 2018cxcy012).
田庆 , 陈双虎 , 陈景龙 , 刘蕊 , 汪雨诗 , 杨晓朋 , 叶勇 . 一种基于罗丹明类似物的Cys近红外荧光探针[J]. 有机化学, 2019 , 39(7) : 2089 -2093 . DOI: 10.6023/cjoc201812047
A near-infrared fluorescence probe CS-Cys was synthesized using rhodamine analoguse as near-infrared fluorescent group. The probe can specifically response to Cys, not to other sulfhydryl amino acids. The response mechanism is that Cys reacts with the acrylic ester of CS-Cys and the conjugated addition-cyclization reaction occurs, then the hydroxyl groups are exposed and fluorescence is released. Through studying the fluorescence changes of CS-Cys and Cys in different pH environments, it was found that the donor ability of the electron-donor group and the process of the ICT could be monitored by changing the pH of probe solution, and the fluorescence excitation wavelength and the emission wavelength could be adjusted to the near infrared region.
Key words: fluorescent probe; cysteine; near-infrared; rhodamine analogues; ICT
[1] Ubuka, T.; Ohta, J.; Yao, W. B.; Abe, T.; Teraoka, T.; Kurozumi, Y. Amino Acids 1992, 2, 143.
[2] Wang, X. B.; Jin, H. F.; Tang, C. S.; Du, J. B. Clin. Exp. Pharmacol. Physiol. 2010, 37, 745.
[3] Yue, Y.; Huo, F.; Yin, C. Sci. Sin. Chim. 2016, 47, 249(in Chinese). (岳永康, 霍方俊, 阴彩霞, 中国科学:化学, 2016, 47, 249.)
[4] Reddie, K. G.; Carroll, K. S. Curr. Opin. Chem. Biol. 2008, 12, 746.
[5] Weerapana, E.; Wang, C.; Simon, G. M.; Richter, F.; Khare, S.; Dillon, M. B.; Cravatt, B. F. Nature 2010, 468, 790.
[6] Liu, C.; Li, Y.; Qi, F.; Long, L.; Yang, R. Sci. Sin. Chim. 2017, 47, 1015(in Chinese). (刘长辉, 李银辉, 齐风佩, 龙立平, 杨荣华, 中国科学:化学, 2017, 47, 1015.)
[7] Yang, X.; Liu, W.; Tang, J.; Li, P.; Weng, H.; Ye, Y.; Xian, M.; Tang, B.; Zhao, Y. Chem. Commun. 2018, 54, 11387.
[8] Elshorbagy, A. K.; Kozich, V.; Smith, A. D. Curr. Opin. Clin. Nutr. 2012, 15, 49.
[9] Niu, L. Y.; Guan, Y. S.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Chem. Cummun. 2013, 49, 1294.
[10] Yang, T.; Guo, Z.; Shao, A.; Zhao, P.; Zhu, W. Chin. J. Appl. Chem. 2016, 33, 397(in Chinese). (杨婷婷, 郭志前, 邵安东, 赵平, 朱为宏, 应用化学, 2016, 33, 397.)
[11] Hou, J. T.; Yang, J.; Li, K.; Yu, K. K.; Yu, X. Q. Sens. Actuators, B Chem. 2015, 214, 92.
[12] Liu, S. R.; Chang, C. Y.; Wu, S. P. Anal. Chim. Acta 2014, 849, 64.
[13] Yang, Y.; Huo, F.; Yin, C.; Zheng, A.; Chao, J.; Li, Y.; Liu, D. Biosens. Bioelectron 2013, 47, 300.
[14] Wang, S.; Shen, S.; Zhang, Y.; Dai, X.; Zhao, B. Chin. J. Org. Chem. 2014, 34, 1717(in Chinese). (王胜清, 申世立, 张延如, 戴溪, 赵宝祥, 有机化学, 2014, 34, 1717.)
[15] Zhou, X.; Jin, X.; Sun, G.; Wu, X. Chem. Eur.-J. 2013, 19, 7817.
[16] Niu, L. Y.; Guan, Y. S.; Chen, Y. Z.; Wu, L. ZTung, C. H.; Yang, Q. Z. J. Am. Chem. Soc. 2012, 134, 18928.
[17] Gong, J.; Wei, P.; Su, Y.; Li, Y.; Feng, X.; Lam, J. W. Y.; Zhang, D.; Song, X.; Tang, B. Z. Chin. Chem. Lett. 2018, 29, 1493
[18] Xie, Z.; Fu, M.; Yin, B.; Zhu, Q. Chin. J. Org. Chem. 2018, 38, 1364(in Chinese). (谢振达, 付曼琳, 尹彪, 朱勍, 有机化学, 2018, 38, 1364.)
[19] Liu, K.; Shang, H.; Kong, X.; Ren, M.; Wang, J. Y.; Liu, Y.; Lin, W. Biomaterials 2016, 100, 162.
[20] Yuan, L.; Lin, W.; Chen, H. Biomaterials 2013, 34, 9566.
[21] Yuan, L.; Lin, W.; Yang, Y.; Chen, H. J. Am. Chem. Soc. 2012, 134, 1200.
[22] Wang, C.; Wong, K. M. C. Inorg. Chem. 2013, 52, 13432.
[23] Jia, X.; Chen, Q.; Yang, Y.; Tang, Y.; Wang, R.; Xu, Y.; Zhu, W.; Qian, X. J. Am. Chem. Soc. 2016, 138, 10778.
/
〈 |
|
〉 |