研究论文

微波辐射下超细高岭土催化的肟类化合物的高效合成

  • 梁玲 ,
  • 牟佳玲 ,
  • 陈悦 ,
  • 王梦莎 ,
  • 洪志
展开
  • 台州学院医药化工与材料工程学院 台州 318000

收稿日期: 2018-11-17

  修回日期: 2019-02-13

  网络出版日期: 2019-03-29

基金资助

浙江省基础公益研究计划(No.LGG18B020002)资助项目.

An Efficient Synthesis of Oxime Compounds Catalyzed by Superfine Kaolin under Microwave Irradiation

  • Liang Ling ,
  • Mou Jialing ,
  • Chen Yue ,
  • Wang Mengsha ,
  • Hong Zhi
Expand
  • School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000

Received date: 2018-11-17

  Revised date: 2019-02-13

  Online published: 2019-03-29

Supported by

Project supported by the Basic Public Research Project of Zhejiang Province (No. LGG18B020002).

摘要

以廉价易得的超细高岭土为催化剂,羰基类化合物和盐酸羟胺为原料,PEG-400为溶剂,在微波辐射的条件下高效地合成一系列肟类化合物,同时探究了催化剂、溶剂种类、反应时间、反应温度等条件对反应的影响,并对所得的产物进行了熔点、核磁、红外、质谱数据检测.该方法具有反应时间短(5~15 min)、产率高、操作简便和环境友好等优点.另外,也初步探索了超细高岭土催化的微波辐射下肟交换反应及肟醚类化合物合成反应,产率分别为42%~67%与59%~72%.

本文引用格式

梁玲 , 牟佳玲 , 陈悦 , 王梦莎 , 洪志 . 微波辐射下超细高岭土催化的肟类化合物的高效合成[J]. 有机化学, 2019 , 39(5) : 1323 -1332 . DOI: 10.6023/cjoc201811021

Abstract

Oxime compounds were efficiently synthesized with aromatic or aliphatic ketones and hydroxylamine hydrochloride as raw materials in the PEG-400 solution, using cheap and readily available superfine kaolin as catalyst under microwave irradiation condition. The effects of the catalyst, the solvent type, reaction time, reaction temperature on the reaction were investigated. The structures of the products were detected by melting point, nuclear magnetic resonance, infrared spectroscopy and mass spectrometry data. This method has the advantages of short reaction times (5~15 min), good yields, and simple operation as well as environmental friendliness. In addition, the preliminary experiment shows that superfine kaolin could also catalyze transoximation reaction and preparation of oxime ether compounds under microwave irradiation with the yields of 42%~67% and 59%~72%.

参考文献

[1] Bolotin, D. S.; Bokach, N. A.; Demakova, M. Y.; Kukushkin, V. Y. Chem. Rev. 2017, 117, 13039.
[2] Ran, L. F.; Liang, H.; Guan, Z. H. Chin. J. Org. Chem. 2013, 33, 66(in Chinese). (冉陇飞, 梁浩, 关正辉, 有机化学, 2013, 33, 66.)
[3] Watson, K. G. Aust. J. Chem. 2011, 64, 367.
[4] Kolesnikov, A. M.; Yuidin, M. A.; Nikiforov, A. S.; Ivanov, I. M.; Vengerovich, N. G.; Makacheev, A. S. Bull. Exp. Biol. Med. 2018, 164, 624.
[5] Wang, X. B.; Chen, M. H.; Li, Q.; Zhang, J. P.; Ruan, X. H.; Xie, Y.; Xue, W. Chem. Pap. 2017, 71, 1225.
[6] Canario, C.; Silvestre, S.; Falcao, A.; Alves, G. Curr. Med. Chem. 2018, 25, 660.
[7] Patil, V. V.; Gayakwad, E. M.; Shankarling, G. S. J. Org. Chem. 2016, 81, 781.
[8] Liu, S. H.; Hao, F.; Liu, P. L.; Luo, H. A. RSC Adv. 2015, 5, 22863.
[9] Reddy, M. K.; Mallik, S.; Ramakrishna, I.; Baidya, M. Org. Lett. 2017, 19, 1694.
[10] Hong, Z.; Li, J. J.; Chen, G.; Jiang, H. J.; Yang, X. F.; Pan, H.; Su, W. K. RSC Adv. 2016, 6, 13581.
[11] Sathyanarayana, P.; Upare, A.; Ravi, O.; Muktapuram, P. R.; Bathula, S. R. RSC Adv. 2016, 6, 22749.
[12] Bezlada, A.; Szewczyk, M.; Mlynarski, J. J. Org. Chem. 2016, 81, 336.
[13] Xu, Y. Y.; Yang, Q. S.; Li, Z. H.; Gao, L. Y.; Zhang, D. S.; Wang, S. F.; Zhao, X. Q.; Wang, Y. J. Chem. Eng. Sci. 2016, 152, 717.
[14] Lin, C. K.; Cheng, L. W.; Li, H. Y.; Yun, W. Y.; Cheng, W. C. Org. Biomol. Chem. 2015, 13, 2100.
[15] Xie, F. K.; Du, C.; Pang, Y. D.; Lian, X.; Xue, C. T.; Chen, Y. Y.; Wang, X. F.; Cheng, M. S.; Guo, C.; Lin, B.; Liu, Y. X. Tetrahedron Lett. 2016, 57, 5820.
[16] Peterson, K. E.; Cinelli, M. A.; Morrell, A. E.; Mehta, A.; Dexheimer, T. S.; Agama, K.; Antony, S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2011, 54, 4937.
[17] Eshghi, H.; Hassankhani, A. Org. Prep. Proced. Int. 2005, 37, 575.
[18] Sharghi, H.; Sarvari, M. H. Synlett 2001, 1, 99.
[19] Yao, Q. C.; Fan, L.; Liu, L.; Huang, Y. M.; Cui, J. G. Chem. Res. Appl. 2013, 25, 220(in Chinese). (姚秋翠, 范磊, 刘亮, 黄燕敏, 崔建国, 化学研究与应用, 2013, 25, 220.)
[20] Noverges, B.; Mollar, C.; Medio-Simón, M.; Asensio, G. Adv. Synth. Catal. 2013, 355, 2327.
[21] Manetti, F.; Magnani, M.; Castagnolo, D.; Passalacqua, L.; Botta, M.; Corelli, F.; Saddi, M.; Deidda, D.; De Logu, A. ChemMedChem 2006, 1, 973.
[22] Ghozlojeh, N. P.; Setamdideh, D. Orient. J. Chem. 2015, 31, 1823.
[23] Juskowiak, M.; Krzyzanowski, P. J. Prakt. Chem. 1989, 331, 870.
[24] Shimaoka, H.; Kuramoto, H.; Furukawa, J. I.; Miura, Y.; Kurogochi, M.; Kita, Y.; Hinou, H.; Shinohara, Y.; Nishimura, S. I. Chem.-Eur. J. 2007, 13, 1664.
[25] Sridhar, M.; Narsaiah, C.; Raveendra, J.; Reddy, G. K.; Reddy, M. K. K.; Ramanaiah, B. C. Tetrahedron Lett. 2011, 52, 4701.
[26] Hyodo, K.; Togashi, K.; Oishi, N.; Hasegawa, G.; Uchida, K. Green Chem. 2016, 18, 5788.
[27] Pienkoß, F.; Ochoa-Hernández, C.; Theyssen, N.; Leitner, W. ACS Sustainable Chem. Eng. 2018, 6, 8782.
[28] Aras, A.; Albayrak, M.; Arikan, M.; Sobolev, K. Clay Miner. 2007, 42, 233.
[29] Zheng, Y. F.; Li, D.; Chen, S. K.; Sun, S. H.; Liu, C. H.; Gao, X. H. Ind. Catal. 2012, 20, 1(in Chinese). (郑云锋, 李荻, 陈淑琨, 孙书红, 刘从华, 高雄厚, 工业催化, 2012, 20, 1.)
[30] Shen, J. X.; Ma, H. W. Bull. Chin. Ceram. Soc. 2016, 35, 1150(in Chinese). (申继学, 马鸿文, 硅酸盐通报, 2016, 35, 1150.)
[31] Yan, H. Q.; Chen, X. Q.; Wu, T. T.; Feng, Y. H.; Wang, C. X.; Li, J. C.; Lin, Q. Polym. Bull. 2014, 71, 2923.
[32] Ignatova, T.; Mincheva, K.; Ignatov, S.; Dzhelyaydinova, A.; Petkov, T.; Kyazimov, A. J. Chem. Technol. Metall. 2013, 48, 186.
[33] Liu, H. J.; Ao, L. Inner Mongolia Pet. Ind. 1998, 24, 112(in Chinese). (刘惠军, 敖丽, 内蒙古石油化工, 1998, 24, 112.)
[34] Chermahini, A. N.; Teimouri, A.; Momenbeik, F.; Zarei, A.; Dalirnasab, Z.; Ghaedi, A.; Roosta, M. J. Heterocycl. Chem. 2010, 47, 913.
[35] Maheen, G.; Tian, G.; Song, Z.; He, C.; Shi, Z.; Liu, Z.; Yuan, H.; Feng, S. J. Heterocycl. Chem. 2010, 47, 483.
[36] Hirano, M.; Monobe, H.; Yakabe, S.; Morimoto T. J. Chem. Res., Synop. 1998, 0, 662.
[37] Matsuzaki, T.; Ohsuga, K.; Sugi, Y.; Takami, Y.; Imamura, J. J. Chem. Soc. Jpn., Chem. Ind. Chem. 1985, 12, 2331.
[38] Roudier, J. F.; Foucaud, A. Tetrahedron Lett. 1984, 25, 4375.
[39] Kappe, C. O.; Pieber, B.; Dallinger, D. Angew. Chem., Int. Ed. 2013, 52, 1088.
[40] Nuechter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Green Chem. 2004, 6, 128.
[41] Alam, M.; Lee, D. U. Korean J. Chem. Eng. 2015, 32, 1142.
[42] Erdogan, T.; Erdogan, F. O. Lett. Org. Chem. 2018, 15, 99.
[43] Khan, A. U.; Avecillia, F.; Malik, N.; Khan, M. S.; Khan, M. S.; Mushtaque, M. J. Mol. Struct. 2016, 1122, 100.
[44] Gedye, R. N.; Smith, F. E.; Westaway, K. C. Can. J. Chem., 1988, 66, 17.
[45] Lu, C. B. China Pulp Pap. Ind. 2017, 38, 11(in Chinese). (路崇斌, 中华纸业, 2017, 38, 11.)
[46] Lapides, I.; Yariv, S.; Lahav, N. Clay Miner. 1995, 30, 287.
[47] Gu, T.; Zou, Z. G. B. Bull. Chin. Ceram. Soc. 2005, 4, 70(in Chinese). (顾涛, 邹正光, 硅酸盐通报, 2005, 4, 70.)
[48] Tian, J. Crystal Chemistry of Silicate, Wuhan University Press, Wuhan, 2010, pp. 194~196(in Chinese). (田键, 硅酸盐晶体化学, 武汉大学出版社, 武汉, 2010, pp. 194~196.)
[49] Xiong, W.; Liu, J.; Huang, N.; Zhang, H. P. J. Shaoyang Univ. (Nat. Sci. Ed.) 2012, 9, 75(in Chinese). (熊文, 刘静, 黄娜, 张红萍, 邵阳学院学报(自然科学版), 2012, 9, 75.)
[50] Lieberman, S. V. J. Am. Chem. Soc. 1955, 77, 1114.
[51] Zhukovskaya, N. A.; Dikusar, E. A. Russ. J. Org. Chem. 2010, 46, 180.
[52] Ngwerume, S.; Camp, J. E. J. Org. Chem. 2010, 75, 6271.
[53] Fazaeli, R.; Tangestaninejad, S.; Aliyan H. Catal. Commun. 2007, 8, 205.
[54] Chen, J. B.; Liu, E. M.; Chern, T. R.; Yang, C. W.; Lin, C. I.; Huang, N. K.; Lin, Y. L.; Chern, Y.; Lin, J. H.; Fang, J. M. ChemMedChem 2011, 6, 1390.
[55] Wiley, R. H.; Wakefield, B. J. J. Org. Chem. 1960, 25, 546.
[56] Mokhtari, J.; Naimi-Jamal, M. R.; Hamzeali, H.; Dekamin, M. G.; Kaupp, G. ChemSusChem 2009, 2, 248.
[57] Corma, A.; Garcia, H.; Leyva, A. J. Mol. Catal. A-Chem. 2005, 230, 97.
[58] Wang, H. Y.; Mueller, D. S.; Sachwani, R. M.; Londino, H. N.; Anderson, L. L. Org. Lett. 2010, 12, 2290.
[59] Balogh, A.; Kovendi, A.; Rotaru, D.; Craciunescu, E. US 3117995, 1964[Chem Abstr. 1964, 60, 52549].
[60] Prateeptongkum, S.; Jovel, I.; Jackstell, R.; Vogl, N.; Weckbecker, C.; Beller, M. Chem. Commun. 2009, 1990.
[61] Talapatra, S. K.; Chaudhuri, P.; Talapatra, B. Heterocycles 1980, 14, 1279.
[62] Domnin, N. A.; Yakimovich, S. I. Zh. Neorg. Khim. 1965, 1, 1024.
[63] Jain, N.; Kumar, A.; Chauhan, S. M. S. Tetrahedron Lett. 2005, 46, 2599.
[64] Gunatilaka, A. A. L.; Ramachandran, S. Indian J. Chem. 1978, 16B, 432.
[65] Bruton, E. A.; Brammer, L.; Pigge, F. C.; Aakeroey, C. B.; Leinen, D. S. New J. Chem. 2003, 27, 1084.
[66] Bodor, N.; Fey, L.; Kovendi, A. Rev. Roum. Chim. 1966, 11, 405.
[67] Dubost, E.; Fossey, C.; Cailly, T. Rault, S.; Fabis, F. J. Org. Chem. 2011, 76, 6414.

文章导航

/