3D打印技术在有机合成化学中的应用
收稿日期: 2019-01-02
修回日期: 2019-03-12
网络出版日期: 2019-03-29
基金资助
福建省自然科学基金(No.2016J01063)、福建省“高校新世纪优秀人才支持计划”(No.2012FJ-NCET-ZR03)和福建省“高校杰出青年科研人才培育计划”(No.11FJPY02)、“十三五”海洋经济创新发展示范(No.16PYY007SF17)以及“华侨大学研究生科研创新基金”资助项目.
Application of 3D Printing Technology in Organic Synthetic Chemistry
Received date: 2019-01-02
Revised date: 2019-03-12
Online published: 2019-03-29
Supported by
Project supported by the Natural Science Foundation of Fujian Province (No. 2016J01063), the Program for New Century Excellent Talents in Fujian Province (No. 2012FJ-NCET-ZR03) and the University Distinguished Young Research Talent Training Program of Fujian Province (No. 11FJPY02), the National Marine Economic Innovation and Development Project (No. 16PYY007SF17) and the Subsidized Project for Postgraduates' Innovative Fund in Scientific Research of Huaqiao University.
相对于传统的材料去除-切削加工技术,3D打印作为一种“自下而上”的材料累加制造方法,不仅操作简单、制造成本更低以及可实现快速生成,而且可实现复杂结构件的精确定制.因此,3D打印已成为第三次工业革命的代表性技术.近年来,化学家们将3D打印技术与有机合成相结合,在多通道异相催化剂和新型反应装置的研发设计等方面取得了积极的进展,进而使这项技术在有机合成领域中应用越来越广泛.对近年来基于3D打印技术的有机合成研究进展进行了综述,涵盖基于3D打印异相催化剂或催化剂载体、3D打印反应装置和3D打印流反应器,并对该领域的发展趋势进行了展望.
赖石林 , 廖旭 , 张辉 , 蒋岩 , 刘源岗 , 王士斌 , 熊兴泉 . 3D打印技术在有机合成化学中的应用[J]. 有机化学, 2019 , 39(7) : 1858 -1866 . DOI: 10.6023/cjoc201901001
Compared with traditional material removal-cutting method, 3D printing is a "bottom-up" material accumulation manufacturing technology. This novel technology is not only simple to operate, but also has a lower manufacturing cost and can be quickly generated. What's more, 3D printing technology can fabricate the be-spoke objects with intricate internal structures. Therefore, 3D printing has been a representative technology of the third industrial revolution. In recent years, chemists have combined 3D printing technology with organic synthesis and made many good achievements in the development of new multichannel heterogeneous catalysts and reaction devices, which has made this technology more and more widely used in the field of organic synthesis. In this review, the progress of the organic synthesis based on 3D printing technology from 2012 to 2018 are summarized, such as 3D-printed heterogeneous catalysts, 3D-printed devices and 3D-printed continuous flow microreactors. Furthermore, the development trends of this field in the future are also prospected.
[1] Hull, C. W. US 04575330, 1986.
[2] Huang, W. D. J. New Industrialization 2016, 6, 53 (in Chinese). (黄卫东, 新型工业化, 2016, 6, 53.)
[3] Gunther, D.; Heymel, B.; Gunther, J. F.; Ederer, I. Rapid Prototyping J. 2014, 20, 320.
[4] Ding, Y. C. Minying Keji 2018, (7), 166(in Chinese). (丁有成, 民营科技, 2018, (7), 166.)
[5] Zhang, M.; Jiang, M.-H.; Wu, G.-H.; Yang, Q.-L. Beverage Ind. 2015, 18, 57(in Chinese). (张明, 姜明洪, 吴光虹, 杨秋玲, 饮料工业, 2015, 18, 57.)
[6] Jing, L. G.; Shen, L. J. Biology Teaching 2016, 41, 6(in Chinese). (井乐刚, 沈丽君, 生物学教学, 2016, 41, 6.)
[7] Hu, Y. P. Mech. Res. Appl. 2016, 29, 193(in Chinese). (胡彦萍, 机械研究与应用, 2016, 29, 193.)
[8] Zhu, G.; Mo, W.-J. Val. Eng. 2015, 34, 178(in Chinese). (朱阁,莫蔚靖, 价值工程, 2015, 34, 178.)
[9] Paulsen, S. J.; Miller, J. S. Dev. Dynam. 2015, 244, 320.
[10] He, C. L.; Tang, Z. H.; Tian, H. Y.; Chen, X. S. Acta Polym. Sin. 2013, (6), 722 (in Chinese). (贺超良, 汤朝晖, 田华雨, 陈学思, 高分子学报, 2013, (6), 722.)
[11] Zhang, X. J.; Tang, S. Y.; Zhao, H. Y.; Guo, S. Q.; Li, N.; Chen, B. Q. J. Mater. Eng. 2016, 44, 122 (in Chinese). (张学军, 唐思熠, 肇恒跃, 郭绍庆, 李能, 孙兵兵, 陈冰清, 材料工程, 2016, 44, 122.)
[12] Chen, S. P.; Yi, H.-P.; Luo, Z. H.; Zhu Ge, X. Q.; Luo, K. Mater. Rev. 2016, 30, 54 (in Chinese). (陈硕平, 易和平, 罗志虹, 诸葛祥群, 罗鲲, 材料导报, 2016, 30, 54.)
[13] Li, X.-L.; Ma, J.-X.; Li, P.; Chen, Q.; Zhou, W.-M. Proc. Autom. Instrum. 2014, 35, 1 (in Chinese). (李小丽, 马剑雄, 李萍, 陈琪, 周伟民, 自动化仪表, 2014, 35, 1.)
[14] Rossi, S.; Puglisi, A.; Benaglia, M. ChemCatChem 2018, 10, 1512.
[15] Tubío, C. R.; Azuaje, J.; Escalante, L.; Coelho, A.; Guitián, F.; Sotelo, E.; Gil, A. J. Catal. 2016, 334,110.
[16] Azuaje, J.; Tubío, C. R.; Escalante, L.; Gómez, M.; Guitián, F.; Coelho, A.; Caamaño, O.; Gil, A.; Sotelo, E. Appl. Catal. A-Gen. 2017, 530, 203.
[17] Manzano, J. S.; Weinstein, Z. B.; Sadow, A. D.; Slowing, I. I. ACS Catal. 2017, 7, 7567.
[18] Díaz-Marta, A. S.; Tubío, C. R.; Carbajales, C.; Fernandez, C.; Escalante L.; Sotelo, E.; Guitian, F.; Barrio, V. L.; Gil, A.; Coelho, A. ACS Catal. 2018, 8, 392.
[19] Symes, M. D.; Kitson, P. J.; Yan, J.; Richmond, C. J.; Cooper, G. J.; Bowman, R. W.; Vilbrandt, T.; Cronin, L. Nat. Chem. 2012, 4, 349.
[20] Johnson, R. D. Nat. Chem. 2012, 4, 338.
[21] Kitson, P. J.; Symes, M. D.; Dragone, V.; Cronin, L. Chem. Sci. 2013, 4, 3099.
[22] Kitson, P. J.; Glatzel, S.; Chen, W.; Lin, C. G.; Song, Y. F.; Cronin, L. Nat. Protoc. 2016, 11, 920.
[23] Mathieson, J. S.; Rosnes, M. H.; Sans, V.; Kitson, P. J.; Cronin, L. Beilstein J. Nanotechnol. 2013, 4, 285.
[24] Kitson, P. J.; Glatzel, S.; Cronin, L. Beilstein J. Org. Chem. 2016, 12, 2776.
[25] Zalesskiy, S. S.; Shlapakov, N. S.; Ananikov, V. P. Chem. Sci. 2016, 7, 6740.
[26] Kucherov, F. A.; Gordeev, E. G.; Kashin, A. S.; Ananikov, V. P. Angew. Chem. 2017, 29, 16147.
[27] Gordeev, E. G.; Degtyareva, E. S.; Ananikov, V. P. Russ. Chem. B 2016, 65, 1637.
[28] Lederle, F.; Meyer, F.; Kaldun, C.; Namyslo, J. C.; Hübner, E. G. New J. Chem. 2017, 41, 1925.
[29] Kitson, P. J.; Rosnes, M. H.; Sans, V.; Dragone, V.; Cronin, L. Lab Chip. 2012, 12, 3267.
[30] Dragone, V.; Sans, V.; Rosnes, M. H.; Kitson, P. J.; Cronin, L. Beilstein J. Org. Chem. 2013, 9, 951.
[31] Elias, Y.; von Rohr, P. R.; Bonrath, W.; Medlock, J.; Buss, A. Chem. Eng. Process 2015, 95, 175.
[32] Avril, A.; Hornung, C. H.; Urban, A.; Fraser, D.; Horne, M.; Veder, J. P.; Tsanaktsidis, J.; Rodopoulos, T.; Henry, C.; Gunasegaram, D. R. React. Chem. Eng. 2017, 2, 180.
[33] Hornung, C. H.; Nguyen, X.; Carafa, A.; Gardiner, J.; Urban, A.; Fraser, D.; Horne, M. D.; Gunasegaram, D. R.; Tsanaktsidis, J. Org. Process Res. Dev. 2017, 21, 1311.
[34] Capel, A. J.; Wright, A.; Harding, M. J.; Weaver, G. W.; Li, Y.; Harris, R. A.; Edmondson, S.; Goodridge, R. D.; Christie, S. D. Beilstein J. Org. Chem. 2017, 13, 111.
[35] Rossi, S.; Porta, R.; Brenna, D.; Puglisi, A.; Benaglia, M. Angew. Chem. 2017, 129, 4354.
[36] Rao, Z. X.; Patel, B.; Monaco, A.; Cao, Z. J.; Barniol-Xicota, M.; Pichon, E.; Ladlow, M.; Hilton, S. Eur. J. Org. Chem. 2017, 44, 6499.
[37] Bettermann, S.; Schroeter, B.; Morit, H.-U.; Pauer, W.; Fassbender, W.; Luinstra, G. A. Chem. Eng. J. 2018, 338, 311.
[38] Genet, C.; Nguyen, X.; Bayatsarmadi, B.; Horne, M. D.; Gardiner, J.; Hornung, C. H. J. Flow. Chem. 2018, 8, 81.
[39] Kitson, P. J.; Marie, G.; Francoia, J.-P.; Zalesskiy, S. S.; Sigerson, R. C.; Mathieson, J. S.; Cronin, L. Science 2018, 359, 314.
[40] Huang, J.; Jiang, S. Adv. Mater. Ind. 2013, (1), 62 (in Chinese). (黄健, 姜山, 新材料产业, 2013, (1), 62.)
/
〈 |
|
〉 |