次氯酸钠引发的α-羟基酯的自由基氧化
收稿日期: 2019-01-15
修回日期: 2019-03-12
网络出版日期: 2019-03-29
Radical Oxidation of α-Hydroxyl Ester Initiated by Sodium Hypochlorite
Received date: 2019-01-15
Revised date: 2019-03-12
Online published: 2019-03-29
王茂昌 , 张宝华 , 丁凯 . 次氯酸钠引发的α-羟基酯的自由基氧化[J]. 有机化学, 2019 , 39(7) : 1996 -2000 . DOI: 10.6023/cjoc201901019
Sodium hypochlorite has been used as a green oxidant in oxidation of alcohols. However, the oxidation of a-hydroxyl ester via sodium hypochloriteis difficult under the same conditions. Herein, an efficient method is developed for the oxidation of a-hydroxyl ester with sodium hypochlorite in the presence of hydrogenbromide. In this case, a reaction mechanism was proposed with the formation of free radicals as reactive intermediates, which was different from the mechanism of traditional Stevens oxidation. The method is also applied to the oxidation of common secondary alcohol and has good selectivity for multi-hydroxyl compounds.
Key words: sodium hypochlorite; green; radical oxidation; selectivity
[1] (a) Stevens, R. V.; Chapman, K. T.; Weller, H. N. J. Org. Chem. 1980, 45, 2030.
(b) Hirashita, T.; Sugihara, Y.; Ishikawa, S.; Naito, Y.; Matsukawa, Y.; Araki, S. Synlett 2018, 29, 2404.
[2] (a) Mirafzal, G. A.; Lozeva, A. M. Tetrahedron Lett. 1998, 39, 7263.
(b) Zhang, Y. J.; Born, S. C.; Jensen, K. F. Org. Process Res. Dev. 2014, 18, 1476.
(c) Leduc, A. B.; Jamison, T. F. Org. Process Res. Dev. 2012, 16, 1082.
[3] (a) Wolfe, S.; Hasan, S. K.; Campbell, J. R. J. Chem. Soc., Chem. Commun. 1970, 1420.
(b) Yamaoka, H.; Moriya, N.; Ikunaka, M. Org. Process Res. Dev. 2004, 8, 931.
[4] (a) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem. 1987, 52, 2559.
(b) Kloth, K.; Brunjes, M.; Kunst, E.; Joge, T.; Gallier, F.; Adibekian, A.; Kirschning, A. Adv. Synth. Catal. 2005, 347, 1423.
(c) Reddy, S. R.; Chadha, A. RSC Adv. 2013, 3, 14929.
[5] (a) Larsen, R. D.; Corley, E. G.; Davis, P.; Reider, P. J.; Grabowski, E. J. J. J. Am. Chem. Soc. 1989, 111, 7650.
(b) Gu, X.; Wang, L.; Gao, Y. F.; Ma, W.; Li, Y. M.; Gong, P. Tetrahedron:Asymmetry 2014, 25, 1573.
[6] (a) Stiller, E. T.; Harris, S. A.; Finkelstein, J.; Keresztesy, J. C.; Folkers, K. J. Am. Chem. Soc. 1940, 62, 1785.
(b) Parke, H. C.; Lawson, E. J. J. Am. Chem. Soc. 1941, 63, 2869.
(c) Mouterde, L. M. M.; Stewart, J. D. Org. Process Res. Dev. 2016, 20, 954.
[7] (a) Lipton, S. H.; Strong, F. M. J. Am. Chem. Soc. 1949, 71, 2364.
(b) Synoradzki, L.; Rowicki, T.; Wlostowski, M. Org. Process Res. Dev. 2006, 10, 103.
(c) Markert, M.; Scheffler, U.; Mahrwald, R. J. Am. Chem. Soc. 2009, 131, 16642.
(d) Heidlindemann, M.; Hammel, M.; Scheffler, U.; Mahrwald, R.; Hummel, W.; Berkessel, A.; Groger, H. J. Org. Chem. 2015, 80, 3387.
[8] (a) Boaz, N. W.; Mackenzie, E. B.; Debenham, S. D.; Large, S. E.; Ponasik, J. A. J. Org. Chem. 2005, 70, 1872.
(b) Pasquier, C.; Naili, S.; Pelinski, L.; Brocard, J.; Mortreux, A.; Agbossou, F. Tetrahedron:Asymmetry 1998, 9, 193.
(c) Shimizu, S.; Yamada, H.; Hata, H.; Morishita, T.; Akutsu, S.; Kawamura, M. Agric. Biol. Chem. 1987, 51, 289.
[9] (a) Iwahashi, M.; Naganawa, A.; Kinoshita, A.; Shimabukuro, A.; Nishiyama, T.; Ogawa, S.; Matsunaga, Y.; Tsukamoto, K.; Okada, Y.; Matsumoto, R.; Nambu, F.; Oumi, R.; Odagaki, Y.; Katagi, J.; Yano, K.; Tani, K.; Nakai, H.; Toda, M. Bioorg. Med. Chem. 2011, 19, 6935.
(b) Leduc, A. B.; Jamison, T. F. Org. Process Res. Dev. 2012, 16, 1082.
(c) Furukawa, I.; Sasaki, M.; Inoue, T.; Ohta, T. Phosphorus Sulfur Silicon Relat. Elem. 1998, 143, 85.
(d) Maekawa, H.; Ishino, Y.; Nishiguchi, I. Chem. Lett. 1994, 1017.
(e) Chang, H. S.; Woo, J. C.; Lee, K. M.; Ko, Y. K.; Moon, S. S.; Kim, D. W. Synth. Commun. 2002, 32, 31.
[10] Filler, R. Chem. Rev. 1963, 63, 21.
[11] Moriyama, K.; Takemura, M.; Togo, H. Org. Lett. 2012, 14, 2414.
[12] Griesbaum, K.; Meister, M. Chem. Ber. 1987, 120, 1573.
[13] Thiede, S.; Wosniok, P. R.; Herkommer, D.; Schulz-Fincke, A.-C.; Gütschow, M.; Menche, D. Org. Lett. 2016, 18, 3964.
[14] Grison, C.; Petek, S.; Coutrot, P. Tetrahedron 2005, 61, 7193.
[15] Lappalainen, K.; Kolehmainen, E.; Kaartinen, M.; Kauppinen, R.; Seppaelae, R.; Vatanen, V. Magn. Reson. Chem. 1994, 32, 786.
[16] Zhao, Z.-G.; Yan, P.; Liu, X.-L.; Shi, Z.-C. Lett. Org. Chem. 2012, 9, 604.
[17] Mitra, M. N.; Elliott, W. H. J. Org. Chem. 1968, 33, 2814.
[18] Stoltz, K. L.; Erickson, R.; Staley, C.; Weingarden, A. R.; Romens, E.; Steer, C. J; Khoruts, A.; Dosa, P. I. J. Med. Chem. 2017, 60, 3451.
[19] Zuercher, R. F. Helv Chim. Acta 1963, 46, 2054.
[20] Iida, T.; Nishida, S.; Chang, F. C.; Niwa, T.; Goto, J.; Nambara, T. Chem. Pharm. Bull. 1993, 41, 763.
[21] Kallner, A. Acta Chem. Scand. 1967, 21, 315.
[22] Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. J. Am. Chem. Soc. 2010, 132, 15328.
[23] Kurouchi, H.; Sugimoto, H.; Otani, Y.; Ohwada, T. J. Am. Chem. Soc. 2010, 132, 807.
/
〈 |
|
〉 |