无金属催化非活化烯烃的多氯甲基化/芳基化自由基反应合成含多氯甲基吲哚啉
收稿日期: 2019-01-28
修回日期: 2019-03-12
网络出版日期: 2019-04-08
基金资助
国家自然科学基金(No.21702083)、云南省高校科技创新团队支持计划、黑龙江省创新人才项目(No.UNPYSCT-2016181)、哈尔滨创新人才(No.2015RAQXJ061)资助项目.
Synthesis of Polychloromethyl-Containing Indolines via Metal-Free Radical Arylpolychloromethylation of Unactivated Alkenes
Received date: 2019-01-28
Revised date: 2019-03-12
Online published: 2019-04-08
Supported by
Project supported by the National Natural Science Foundation of China (No. 21702083), the Program for Innovative Research Team (in Science and Technology) in Universities of Yunnan Province, the Program of Young Innovators of Education Department of Heilongjiang Province (No. UNPYSCT-2016181), and the Innovation Talents Foundation of Harbin of China (No. 2015RAQXJ061).
李文兰 , 孙一茼 , 姚永超 , 许颖 , 李鹏 , 刘颖杰 , 梁德强 . 无金属催化非活化烯烃的多氯甲基化/芳基化自由基反应合成含多氯甲基吲哚啉[J]. 有机化学, 2019 , 39(6) : 1727 -1734 . DOI: 10.6023/cjoc201901047
A metal-free polychloromethylation/cyclization cascade of N-allyl anlines is presented, which provides an access to polychloromethyl-substituted indolines with unactivated alkenes as radical acceptors and dicumyl peroxide (DCP) as the initiator. The inexpensive solvents of polychoromethanes (i.e., CH2Cl2, CHCl3 and CCl4) were used in the reaction as di-or trichloromethylating agents. This work has advantages of easy operation, mild conditions, low cost, and broad substrate scope.
Key words: unactivated alkenes; polychloromethylation; indolines; radical reaction
[1] Gribble, G. W. J. Chem. Educ. 2004, 81, 1441.
[2] Berger, G.; Soubhye, J.; Meyer, F. Polym. Chem. 2015, 6, 3559.
[3] Harris, C. M.; Kannan, R.; Kopecka, H.; Harris, T. M. J. Am. Chem. Soc. 1985, 107, 6652.
[4] Sitachitta, N.; Rossi, J.; Roberts, M. A.; Gerwick, W. H.; Fletcher, M. D.; Willis, C. L. J. Am. Chem. Soc. 1998, 120, 7131.
[5] Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.
[6] Blasiak, L. C.; Vaillancourt, F. H.; Walsh, C. T.; Drennan, C. L. Nature 2006, 440, 368.
[7] Chang, Z.; Flatt, P.; Gerwick, W. H.; Nguyen, V.; Willis, C. L.; Sherman, D. H. Gene 2002, 296, 235.
[8] Jeschke, P. ChemBioChem 2004, 5, 570.
[9] Ardá, A.; Soengas, R. G.; Nieto, M. I.; Jiménez, C.; Rodríguez, J. Org. Lett. 2008, 10, 2175.
[10] Nguyen, V.; Willis, C. L.; Gerwick, W. H. Chem. Commun. 2001, 1934.
[11] Ardá, A.; Rodríguez, J.; Nieto, R. M.; Bassarello, C.; Gomez-Paloma, L.; Bifulco, G.; Jiménez, C. Tetrahedron 2005, 61, 10093.
[12] Orjala, J.; Gerwick, W. H. J. Nat. Prod. 1996, 59, 427.
[13] Sadar, M. D.; Williams, D. E.; Mawji, N. R.; Patrick, B. O.; Wikanta, T.; Chasanah, E.; Irianto, H. E.; Soest, R. V.; Andersen, R. J. Org. Lett. 2008, 10, 4947.
[14] Durow, A. C.; Long, G. C.; O'Connell, S. J.; Willis, C. L. Org. Lett. 2006, 8, 5401.
[15] Su, J.; Zhong, Y.; Zeng, L.; Wei, S.; Wang, Q.; Mak, T. C. W.; Zhou, Z. J. Nat. Prod. 1993, 56, 637.
[16] Gu, Z.; Zakarian, A. Angew. Chem., Int. Ed. 2010, 49, 9702.
[17] Galonic, D. P.; Vaillancourt, F. H.; Walsh, C. T. J. Am. Chem. Soc. 2006, 128, 3900.
[18] Gu, Z.; Herrmann, A. T.; Zakarian, A. Angew. Chem., Int. Ed. 2011, 50, 7136.
[19] Beaumont, S.; llardi, E. A.; Monroe, L. R.; Zakarian, A. J. Am. Chem. Soc. 2010, 132, 1482.
[20] Lu, M.; Loh, T. Org. Lett. 2014, 16, 4698.
[21] Li, D.; Li, Y.; Chen, Z.; Shang, H.; Li, H.; Ren, X. RSC Adv. 2014, 4, 14254.
[22] Tian, Y.; Liu, Z. RSC Adv. 2014, 4, 64855.
[23] Liu, Y.; Zhang, J.; Song, R.; Li, J. Org. Chem. Front. 2014, 1, 1289.
[24] Pan, C.; Gao, D.; Yang, Z.; Wu, C.; Yu, J. Org. Biomol. Chem. 2018, 16, 5752.
[25] Song, J.; Chen, D.; Gong, L. Natl. Sci. Rev. 2017, 4, 381.
[26] Sravanthi, T. V.; Manju, S. L. Eur. J. Pharm. Sci. 2016, 91, 1.
[27] Megna, B. W.; Carney, P. R.; Nukaya, M.; Geiger, P.; Kennedy, G. D. J. Surg. Res. 2016, 204, 47.
[28] Singh, A. K.; Raj, V.; Saha, S. Eur. J. Med. Chem. 2017, 142, 244.
[29] Zheng, C.; You, S. Chem 2016, 1, 830.
[30] Zhuo, C.; Zheng, C.; You, S. Acc. Chem. Res. 2014, 47, 2558.
[31] Ding, Q.; Zhou, X.; Fan, R. Org. Biomol. Chem. 2014, 12, 4807.
[32] Liang, D.; Dong, Q.; Xu, P.; Dong, Y.; Li, W.; Ma, Y. J. Org. Chem. 2018, 83, 11978.
[33] Liang, D.; Ge, D.; Lv, Y.; Huang, W.; Wang, B.; Li, W. J. Org. Chem. 2018, 83, 4681.
[34] Li, Y.; Chang, Y.; Li, Y.; Cao, C.; Yang, J.; Wang, B.; Liang, D. Adv. Synth. Catal. 2018, 360, 2488.
/
〈 |
|
〉 |