含六磷杂并环[3.1.0]己烷四负离子的三核稀土镥配合物的分离与结构表征
收稿日期: 2019-02-18
修回日期: 2019-03-25
网络出版日期: 2019-04-08
基金资助
国家自然科学基金(Nos.21725201,21890721,21572005)资助项目.
Isolation and Characterization of a Trinuclear Rare-Earth Metal Complex Containing a Bicyclo[3.1.0]-P64- Ligand
Received date: 2019-02-18
Revised date: 2019-03-25
Online published: 2019-04-08
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21725201, 21890721, 21572005).
白磷直接合成有机膦化合物具有重要的科学意义,因为其不仅避免了磷化工生产过程中产生的大量污染,而且可以用于合成许多结构新颖的含磷化合物.从镥杂环戊二烯与白磷的反应中分离并表征了一例新颖的三核稀土金属配合物[{(η5-C5Me5)LuCl}3(THF)P6][Li(THF)4].该配合物具有一个六磷杂并环[3.1.0]己烷四负离子配体,相比于其他已知的六磷杂己烷类配体,该配体目前仍未被报道.X射线单晶衍射实验表明,该六磷杂并环[3.1.0]己烷四负离子配体采取的船式构象,与三个稀土金属分别以η1,η3,η3的方式配位,形成一个结构新颖的[P6Lu3]笼状结构.密度泛函理论(DFT)计算表明,该化合物在其两侧分别有一个三中心两电子键.
杜山山 , 柴正祺 , 胡静远 , 张文雄 , 席振峰 . 含六磷杂并环[3.1.0]己烷四负离子的三核稀土镥配合物的分离与结构表征[J]. 有机化学, 2019 , 39(8) : 2338 -2342 . DOI: 10.6023/cjoc201902016
Direct synthesis of organophosphorus compounds from white phosphorus (P4) is of great significance because this process avoids the industry pollution synthetic methods and provides the possibilities for many novel phosphorus-containing compounds. A trinuclear rare-earth metal complex[{(η5-C5Me5)LuCl}3(THF)P6] [Li(THF)4] from lutetacyclopentadiene mediated P4 functionalization was isolated and characterized. This novel complex contains a bicyclo[3.1.0]-P64- ligand which is an unreported type. X-ray diffraction analysis shows that the bicyclo[3.1.0]-P64- ligand adopts a boat-like conformation. Three lutetium atoms coordinate to this ligand in η1, η3, η3 mode, respectively, and a novel[P6Lu3] cage has been formed. Density functional theory (DFT) calculations indicate that there are two three-center two-electron bonds.
[1] (a) Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Chem. Rev. 2010, 110, 4164.
(b) Caporali, M.; Gonsalvi, L.; Rossin, A.; Peruzzini, M. Chem. Rev. 2010, 110, 4178.
(c) Scheer, M.; Balázs, G.; Seitz, A. Chem. Rev. 2010, 110, 4236.
(d) Khan, S.; Sen, S. S.; Roesky, H. W. Chem. Commun. 2012, 48, 2169.
[2] (a) Martin, C. D.; Weinstein, C. M.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. Chem. Commun. 2013, 49, 4486.
(b) Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem., Int. Ed. 2014, 53, 12836.
(c) Arrowsmith, M.; Hill, M. S.; Johnson, A. L.; Kociok-Köhn, G.; Mahon, M. F. Angew. Chem., Int. Ed. 2015, 54, 7882.
[3] (a) Piro, N. A.; Figueroa, J. S.; McKellar, J. T.; Cummins, C. C. Science 2006, 313, 1276.
(b) Camp, C.; Maron, L.; Bergman, R. G.; Arnold, J. J. Am. Chem. Soc. 2014, 136, 17652.
(c) Pinter, B.; Smith, K. T.; Kamitani, M.; Zolnhofer, E. M.; Tran, B. L.; Fortier, S.; Pink, M.; Wu, G.; Manor, B. C.; Meyer, K.; Baik, M.-H.; Mindiola, D. J. J. Am. Chem. Soc. 2015, 137, 15247.
[4] (a) Zarzycki, B.; Bickelhaupt, F. M.; Radius, U. Dalton Trans. 2013, 42, 7468.
(b) Yao, S.; Lindenmaier, N.; Xiong, Y.; Inoue, S.; Szilvási, T.; Adelhardt, M.; Sutter, J.; Meyer, K.; Driess, M. Angew. Chem., Int. Ed. 2015, 54, 1250.
(c) Spitzer, F.; Graßl, C.; Balázs, G.; Zolnhofer, E. M.; Meyer, K.; Scheer, M. Angew. Chem., Int. Ed. 2016, 55, 4340.
(d) Pelties, S.; Maier, T.; Herrmann, D.; de Bruin, B.; Rebreyend, C.; Gärtner, S.; Shenderovich, I. G.; Wolf, R. Chem. Eur. J. 2017, 23, 6094.
[5] Mathey, F. Angew. Chem., Int. Ed. 2003, 42, 1578.
[6] Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 351.
[7] Fleischmann, M.; Heindl, C.; Seidl, M.; Balázs, G.; Virovets, A. V.; Peresypkina, E. V.; Tsunoda, M.; Gabbaï, F. P.; Scheer, M. Angew. Chem., Int. Ed. 2012, 51, 9918.
[8] (a) Warren, D. S.; Gimarc, B. M. J. Am. Chem. Soc. 1992, 114, 5378.
(b) Hiberty, P. C.; Volatron, F. Heteroat. Chem. 2007, 18, 129.
[9] Scherer, O. J.; Swarowsky, H.; Wolmershäuser, G.; Kaim, W.; Kohlmann, S. Angew. Chem., Int. Ed. Engl. 1987, 26, 1153.
[10] Scherer, O. J.; Schwalb, J.; Swarowsky, H.; Wolmershäuser, G.; Kaim, W.; Gross, R. Chem. Ber. 1988, 121, 443.
[11] Scherer, O. J.; Vondung, J.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 1355.
[12] Scherer, O. J.; Werner, B.; Heckmann, G.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1991, 30, 553.
[13] Hulley, E. B.; Wolczanski, P. T.; Lobkovsky, E. B. Chem. Commun. 2009, 6412.
[14] Arleth, N.; Gamer, M. T.; Köppe, R.; Pushkarevsky, N. A.; Konchenko, S. A.; Fleischmann, M.; Bodensteiner, M.; Scheer, M.; Roesky, P. W. Chem. Sci. 2015, 6, 7179.
[15] Vaira, M. D.; Stoppioni, P. Polyhedron 1994, 13, 3045.
[16] Wisniewska, A.; Lapczuk-Krygier, A.; Baranowska, K.; Chojnacki, J.; Matern, E.; Pikies, J.; Grubba, R. Polyhedron 2013, 55, 45.
[17] (a) Konchenko, S. N.; Pushkarevsky, N. A.; Gamer, M. T.; Köppe, R.; Schnöckel, H.; Roesky, P. W. J. Am. Chem. Soc. 2009, 131, 5740.
(b) Huang, W.; Diaconescu, P. L. Chem. Commun. 2012, 48, 2216.
(c) Huang, W.; Diaconescu, P. L. Eur. J. Inorg. Chem. 2013, 4090.
(d) Selikhov, A. N.; Mahrova, T. V.; Cherkasov, A. V.; Fukin, G. K.; Kirillov, E.; Lamsfus, C. A.; Maron, L.; Trifonov, A. A. Organometallics 2016, 35, 2401.
(e) Schoo, C.; Bestgen, S.; Köppe, R.; Konchenko, S. N.; Roesky, P. W. Chem. Commun. 2018, 54, 4770.
[18] Ma, W.; Yu, C.; Chen, T.; Xu, L.; Zhang, W.-X.; Xi, Z. Chem. Soc. Rev. 2017, 46, 1160.
[19] (a) Xu, L.; Chi, Y.; Du, S.; Zhang, W.-X.; Xi, Z. Angew. Chem., Int. Ed. 2016, 55, 9187.
(b) Du, S.; Yin, J.; Chi, Y.; Xu, L.; Zhang, W.-X. Angew. Chem., Int. Ed. 2017, 56, 15886.
(c) Du, S.; Zhang, W.-X.; Xi, Z. Organometallics 2018, 37, 2018.
(d) Du, S.; Hu, J.; Chai, Z.; Zhang, W.-X.; Xi, Z. Chin. J. Chem. 2019, 37, 71.
[20] (a) Nief, F.; Mathey, F. J. Chem. Soc., Chem. Commun. 1989, 800.
(b) Fontaine, F.-G.; Tupper, K. A.; Tilley, T. D. J. Organomet. Chem. 2006, 691, 4595.
[21] (a) Jaroschik, F.; Shima, T.; Li, X.; Mori, K.; Ricard, L.; Le Goff, X.-F.; Nief, F.; Hou, Z. Organometallics 2007, 26, 5654.
(b) Xu, Y.; Wang, Z.; Gan, Z.; Xi, Q.; Duan, Z.; Mathey, F. Org. Lett. 2015, 17, 1732.
[22] (a) Zhang, L.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2007, 46, 1909.
(b) Masuda, J. D.; Jantunen, K. C.; Ozerov, O. V.; Noonan, K. J. T.; Gates, D. P.; Scott, B. L.; Kiplinger, J. L. J. Am. Chem. Soc. 2008, 130, 2408.
[23] (a) Turbervill, R. S. P.; Goicoechea, J. M. Chem. Rev. 2014, 114, 10807;
(b) Hennersdorf, F.; Frötschel, J.; Weigand, J. J. J. Am. Chem. Soc. 2017, 139, 14592.
[24] Baudler, M.; Aktalay, Y.; Tebbe, K. F.; Heinlein, T. Angew. Chem., Int. Ed. Engl. 1981, 20, 967.
[25] Jutzi, P.; Kroos, R.; Möller, A.; Bögger, H.; Penk, M. Chem. Ber. 1991, 124, 75.
[26] (a) Xu, L.; Wang, Y.-C.; Wei, J.; Wang, Y.; Wang, Z.; Zhang, W.-X.; Xi, Z. Chem. Eur. J. 2015, 21, 6686.
(b) Xu, L.; Wei, J.; Zhang, W.-X.; Xi, Z. Chem. Eur. J. 2015, 21, 15860.
(c) Xu, L.; Wang, Y.; Wang, Y.-C.; Wang, Z.; Zhang, W.-X.; Xi, Z. Organometallics 2016, 35, 5.
[27] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339.
[28] Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786.
/
〈 |
|
〉 |