研究简报

碘催化吲哚衍生物与二芳基二碲醚芳碲化反应制备3-芳碲基吲哚

  • 陈锦杨 ,
  • 胡丽 ,
  • 汪海英 ,
  • 谭红绘
展开
  • 长江师范学院化学化工学院 涪陵 408000

收稿日期: 2018-12-25

  修回日期: 2019-03-02

  网络出版日期: 2019-04-09

基金资助

重庆市基础前沿研究项目(No.Cstc2018jcyjAX0051)资助项目.

Iodine-Catalyzed Telluration of Indole Derivatives with Diarylditellurides for Synthesis of 3-Aryltellurylindoles

  • Chen Jinyang ,
  • Hu Li ,
  • Wang Haiying ,
  • Tan Honghui
Expand
  • College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408000

Received date: 2018-12-25

  Revised date: 2019-03-02

  Online published: 2019-04-09

Supported by

Project supported by the Basic and Frontier Research Project of Chongqing City (No. Cstc2018jcyjAX0051).

摘要

在20 mol% K2S2O8存在下,20 mol% I2催化吲哚衍生物与二芳基二碲醚反应,高产率获得一系列3-芳碲基吲哚化合物.该反应对不同吲哚衍生物和二芳基二碲醚均具有较好的适用性.此外,该方法具有反应条件温和、产率高、原子经济性等优点,为3-芳碲基吲哚化合物的制备提供高效的路径.

本文引用格式

陈锦杨 , 胡丽 , 汪海英 , 谭红绘 . 碘催化吲哚衍生物与二芳基二碲醚芳碲化反应制备3-芳碲基吲哚[J]. 有机化学, 2019 , 39(7) : 2048 -2052 . DOI: 10.6023/cjoc201812045

Abstract

In the presence of 20 mol% K2S2O8, a variety of 3-aryltellurylindoles were obtained in high yields via the telluration of indole dervatives with diarylditellurides catalyzed by 20 mol% I2. This process tolerates a wide spectrum of different indole derivatives and diarylditellurides. Other advantages include mild reaction conditions, high yields and atom economy, and an efficient route to 3-aryltellurylindoles is afforded.

参考文献

[1] Nogueira, C. W.; Zeni, A. G.; Rocha, J. B. T. Chem. Rev. 2005, 36, 6255.
[2] Popa, R. A.; Licarete, E.; Banciu, M.; Silvestru, A. Appl. Organomet. Chem. 2018, 32 4252.
[3] Dembitsky, V. M.; Gloriozova, T. A.; Poroikov, V. V. J. Appl. Pharm. Sci. 2017, 7, 184.
[4] Tian, Y.; Zhu, B.; Yang, W.; Jing, J.; Zhang, X. Sens. Actuators, B Chem. 2018, 262, 345.
[5] Liao, L.; Guo, R.; Zhao, X. Angew. Chem., Int. Ed. 2017, 129, 3201.
[6] Sharma, S.; Pathare, R. S.; Maurya, A. K.; Gopal, K.; Roy, T. K.; Sawant, D. M.; Pardasani, R. T. Org. Lett. 2016, 47, 356.
[7] Zeni, G.; Alves, D.; Pena, J. M.; Braga, A. L.; Stefani, H. A.; Nogueira, C. W. Org. Biomol. Chem. 2004, 35, 803.
[8] Guo, R.; Huang, J.; Zhao, X. ACS Catal. 2018, 8, 926.
[9] Bhowmick, D.; Mugesh, G. Org. Biomol. Chem. 2015, 13, 10262.
[10] Jacob, C.; Giles, G. I.; Giles, N. M.; Sies, H. Angew. Chem., Int. Ed. 2003, 42, 4742.
[11] Santoro, S.; Azeredo, J. B.; Nascimento, V.; Sancineto, L.; Braga, A. L.; Santi, C. RSC Adv. 2014, 4, 31521.
[12] Mlochowski, J.; Peczynska-Czoch, W.; Pietka-Ottlik, M.; Wójtowicz-Mochowska, H. Open Catal. J. 2011, 4, 54.
[13] Goyal, D.; Kaur, A.; Goyal, B. Chem. Med. Chem. 2018, 13, 1275.
[14] Toze, F.; Listratova, A. V.; Voskressensky, L. G.; Chernikova, N. Y.; Lobanov, N. N.; Dorovatovskii, P. V. Acta Crystallgr. 2018, 74, 298.
[15] Yan, J.; Hu, J.; An, B.; Huang, L.; Li, X. Eur. J. Med. Chem. 2017, 125, 663.
[16] Bariwal, J.; Voskressensky, L. G.; Van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3831.
[17] More, K. N.; Hong, V. S.; Lee, A.; Park, J.; Kim, S.; Lee, J. Bioorg. Med. Chem. Lett. 2018, 28, 2513.
[18] Wen, Z.; Xu, J.; Wang, Z.; Qi, H.; Xu, Q.; Bai, Z.; Zhang, Q.; K.; Wu, Y.; Zhang, W. Eur. J. Med. Chem. 2015, 90, 184.
[19] Qi, G.; Han, C.; Zuo, D.; Zhai, M. A.; Li, Z.; Qian, Z.; Zhai, Y.; Jiang, X.; Kai, B.; Wu, Y. Eur. J. Med. Chem. 2014, 87, 306.
[20] Samuel, V. B. M., T.; Monaliza, D. C.; Gelson, S. R. F.; Diego, P. A.; Lucielli, S. Asian J. Org. Chem. 2017, 6, 1635.
[21] Gandeepan, P.; Koeller, J.; Ackermann, L. ACS Catal. 2016, 7, 1030.
[22] Vásquez-Céspedes, S.; Ferry, A.; Candish, L.; Glorius, F. Angew. Chem., Int. Ed., 2015, 54, 5772.
[23] Equbal, S. D.; Lavekar, A. G.; Sinha, A. K. Org. Biomol. Chem. 2016, 14, 6111.
[24] Liu, Y.; Zhang, Y.; Hu, C. RSC Adv. 2014, 4, 35528.
[25] Mukherjee, N.; Chatterjee, T.; Ranu, B. C. J. Org. Chem. 2014, 45, 11110.
[26] Luo, D.; Wu, G.; Yang, H. J. Org. Chem. 2016, 81, 4485.
[27] Ferreira, N. L.; Azeredo, J. B.; Fiorentin, B. L.; Braga, A. L. Eur. J. Org. Chem. 2015, 46, 5070.
[28] Azeredo, J. B.; Godoi, M.; Martins, G. M. J. Org. Chem. 2014, 79, 4125.
[29] Chen, Y.; Cho, C. H.; Larock, R. C. Org. Lett. 2009, 11, 173.
[30] Saba, S.; Rafique, J.; Franco, M. S.; Schneider, A. R.; Espíndola, L.; Silva, D. O.; Braga, A. L. Org. Biomol. Chem. 2018, 16, 880.
[31] Dabdoub, M. J.; Jacob, R. G.; Ferreira, J. T. B.; Dabdoub, V. B.; Marques, F. A. Tetrahedron Lett. 1999, 40, 7159.
[32] Zeni, G.; Perin, G.; Cella, R.; Jacob, R. G.; Braga, A. L.; Silveira, C. C.; Stefani, H. A. Synlett 2002, 975.
[33] Liu, C-R.; Ding, L-H. Org. Biomol. Chem. 2015, 13, 2251.
[34] Yi, S.; Li, M.; Mo, W.; Hu, X.; Hu, B.; Sun, N.; Jin, L.; Shen, Z. Tetrahedron Lett. 2016, 57, 1912.
[35] Singh, D.; Deobald, A. M.; Camargo, L. R. S.; Tabarelli, G.; Rodrigues, O. E. D.; Braga, A. L. Org. Lett. 2010, 12, 3288.

文章导航

/