综述与进展

高价碘试剂的有机电化学合成及应用研究进展

  • 张怀远 ,
  • 唐蓉萍 ,
  • 石星丽 ,
  • 颉林 ,
  • 伍家卫
展开
  • 兰州石化职业技术学院应用化学工程学院 甘肃省石油化工过程工程应用技术协同创新中心 兰州 730060

收稿日期: 2019-02-11

  修回日期: 2019-03-10

  网络出版日期: 2019-04-09

基金资助

甘肃省高等学校科学研究(No.2018B-091)和兰州石化职业技术学院教科研(No.JY2018-25)资助项目.

Recent Advances in Organic Electrochemical Synthesis and Application of Hypervalent Iodine Reagents

  • Zhang Huaiyuan ,
  • Tang Rongping ,
  • Shi Xingli ,
  • Xie Lin ,
  • Wu Jiawei
Expand
  • Gansu Province Collaborative Innovation Center of Petrochemical Engineering Application Technology, College of Applied Chemical Engineering, Lanzhou Petrochemical Polytechnic, Lanzhou 730060

Received date: 2019-02-11

  Revised date: 2019-03-10

  Online published: 2019-04-09

Supported by

Project supported by the Scientific Research Projects of Colleges and Universities in Gansu Province (No. 2018B-091) and the Teaching and Scientific Research Project of Lanzhou Petrochemical Poly Technic (No. JY2018-25).

摘要

芳基碘化物的阳极氧化是一种绿色高效的用于合成高价碘试剂的方法,该方法用电流代替了化学试剂,避免了使用价格昂贵、反应后处理棘手的氧化剂,如m-CPBA,H2O2,Oxone,Selectfluor等.利用电化学合成的高价碘试剂,既可促进氟化、氧化环化等反应,也可成功地应用于天然产物的全合成.一价碘/三价碘氧化还原体系可用来高效地形成碳碳键、碳杂原子等化学键.此外,能回收循环再利用的芳基碘介质可用于间接阳极氟化,且容易和产物分离.总结近年来高价碘试剂的电化学合成方法及其介导的各种化学反应.

本文引用格式

张怀远 , 唐蓉萍 , 石星丽 , 颉林 , 伍家卫 . 高价碘试剂的有机电化学合成及应用研究进展[J]. 有机化学, 2019 , 39(7) : 1837 -1845 . DOI: 10.6023/cjoc201902006

Abstract

Anodic oxidation of aryl iodine compouds is a green and efficient method for the synthesis of hypervalent iodine reagents. This method replaces chemical reagents with electric current, avoiding the use of expensive and handle difficult oxidants such as m-CPBA, H2O2, oxone, selectfluor etc. Electrochemically generated hypervalent iodine reagents can not only promote fluorination, oxidative cyclization, but also be successfully applied in the total synthesis of natural products. In addition, recyclable aryl iodine mediator can be used to indirect anodic fluorination and easily separated from products. The organic electrochemical synthesis of hypervalent iodine reagents and their applications in various chemical transformations are reviewed.

参考文献

[1] (a) "Hypervalent Iodine Chemistry:Modern Developments in Organic Synthesis" in Topics in Current Chemistry, Vol. 373, Ed.:Wirth, T., Springer-Verlag, Switzerland, 2016,
(b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
(c) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
(d) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
(e) Duan, Y.-N.; Jiang, S.; Han, Y.-C.; Sun, B.; Zhang, C. Chin. J. Org. Chem. 2016, 36, 1973(in Chinese). (段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973.)
(f) Zhang, H.; Tang, R.; Wu, J.; Hu, Y. Chemistry 2018, 681(in Chinese). (张怀远, 唐蓉萍, 伍家卫, 胡雨来, 化学通报, 2018, 681.)
(g) Ma, J.; Chen, L.; Yuan, Z.; Cheng, H. Chin. J. Org. Chem. 2018, 38, 1586(in Chinese). (马姣丽, 陈立成, 袁中文, 程辉成, 有机化学, 2018, 38, 1586.)
(h) Yan, Y.; Cui, C.; Li, Z. Chin. J. Org. Chem. 2018, 38, 2501(in Chinese). (闫溢哲, 崔畅, 李政, 有机化学, 2018, 38, 2501.)
[2] (a) Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. J. Am. Chem. Soc. 2017, 139, 4354.
(b) Fujita, M.; Miura, K.; Sugimura, T. Beilstein J. Org. Chem. 2018, 14, 659.
(c) Banik, S. M.; Mennie, K. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2017, 139, 9152.
[3] Smith, D. C.; Vitaku, E.; Njardarson, J. T. Org. Lett. 2017, 19, 3508.
[4] Hori, M.; Guo, J.-D.; Yanagi, T.; Nogi, K.; Sasamori, T.; Yorimitsu, H. Angew. Chem., Int. Ed. 2018, 57, 4663.
[5] (a) Zhang, H.; Huang, D.; Wang, K.-H.; Li, J.; Su, Y.; Hu. Y. J. Org. Chem. 2017, 82, 1600.
(b) Chi, Y.; Zhang, W.-X.; Xi, Z. Org. Lett. 2014, 16, 6274.
(c) Chi, Y.; Yan, H.; Zhang, W.-X.; Xi, Z. Chem.-Eur. J. 2017, 23, 757.
(d) Chi, Y.; Yan, H.; Zhang, W.-X.; Xi, Z. Org. Lett. 2017, 19, 2694.
(e) Alazet, S.; Vaillant, F. L.; Nicolai, S.; Courant, T.; Waser, J. Chem.-Eur. J. 2017, 23, 9501.
(f) Colomer, I.; Batchelor-McAuley, C.; Odell, B.; Donohoe, T. J.; Compton, R. G. J. Am. Chem. Soc. 2016, 138, 8855.
(g) Shen, H.; Deng, Q.; Liu, R.; Feng, Y.; Zheng, C.; Xiong, Y. Org. Chem. Front. 2017, 4, 1806.
(h) Wang, Z.; Zhong, J.; Zheng, C.; Fan, R. Org. Chem. Front. 2017, 4, 1005.
[6] Zhang, H.; Huang, D.; Wang, K.-H.; Li, J.; Su, Y.; Hu, Y. Org. Biomol. Chem. 2017, 15, 5337.
[7] Pluta, R.; Krach, P. E.; Cavallo, L.; Falivene, L.; Rueping, M. ACS Catal. 2018, 8, 2582.
[8] Zhang, H.; Wang, K.-H.; Wang, J.; Su, Y.; Huang, D.; Hu, Y. Org. Biomol. Chem. 2019, 17, 2940.
[9] Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. Chem.-Eur. J. 2016, 22, 4030.
[10] Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Angew. Chem., Int. Ed. 2016, 55, 413.
[11] Martínez, C.; Bosnidou, A. E.; Allmendinger, S.; Muñiz, K. Chem.- Eur. J. 2016, 22, 9929.
[12] Zhdankin, V. V. Hypervalent Iodine Chemistry:Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons, Chichester, UK, 2013, pp. 21~143.
[13] (a) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2018, 140, 11487.
(b) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
(c) Yan, M.; Kawamata, Y.; Baran, P. S. Angew. Chem., Int. Ed. 2018, 57, 4149.
(d) Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 6018.
(e) Elsherbini, M.; Wirth, T. Chem.-Eur. J. 2018, 24, 13399.
(f) Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 762.
(g) Chang, X.; Zhang, Q.; Guo, C. Org. Lett. 2019, 21, 10.
(h) Lian, F.; Sun, C.; Xu, K.; Zeng, C. Org. Lett. 2019, 21, 156.
[14] Stuart, D. R. Synlett 2017, 28, 275.
[15] (a) Bielawski, M.; Olofsson, B. Chem. Commun. 2007, 2521.
(b) Bielawski, M.; Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610.
(c) Bielawski, M.; Aili, D.; Olofsson, B. J. Org. Chem. 2008, 73, 4602.
(d) Merritt, E. A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052.
(e) Jalalian, N.; Olofsson, B. Tetrahedron 2010, 66, 5793.
(f) Bouma, M. J.; Olofsson, B. Chem.-Eur. J. 2012, 18, 14242.
[16] (a) Lindstedt, E.; Reitti, M.; Olofsson, B. J. Org. Chem. 2017, 82, 11909.
(b) Laudadio, G.; Gemoets, H. P. L.; Hessel, V.; Noël, T. J. Org. Chem. 2017, 82, 11735.
[17] Miller, L. L.; Hoffmann, A. K. J. Am. Chem. Soc. 1967, 89, 593.
[18] Hoffelner, H.; Lorch, H. W.; Wendt, H. J. Electroanal. Chem. 1975, 66, 183.
[19] (a) Peacock, M. J.; Pletcher, D. Tetrahedron Lett. 2000, 41, 8995.
(b) Peacock, M. J.; Pletcher, D. J. Electrochem. Soc. 2001, 148, D37.
[20] (a) Folgueiras-Amador, A. A.; Philipps, K.; Guilbaud, S.; Poelakker, J.; Wirth, T. Angew. Chem., Int. Ed. 2017, 56, 15446.
(b) Folgueiras-Amador, A. A.; Qian, X.-Y.; Xu, H.-C.; Wirth, T. Chem.-Eur. J. 2018, 24, 487.
(c) Pletcher, D.; Green, R. A.; Brown, R. C. D. Chem. Rev. 2018, 118, 4573.
(d) Folgueiras-Amador, A. A.; Wirth, T. J. Flow Chem. 2017, 7, 94.
(e) Watts, K.; Gattrell, W.; Wirth, T. Beilstein J. Org. Chem. 2011, 7, 1108.
[21] Schmidt, H.; Meinert, H. Angew. Chem. 1960, 72, 109.
[22] Rozhkov, I. N. Russ. Chem. Rev. 1976, 45, 615.
[23] Fuchigami, T.; Fujita, T. J. Org. Chem. 1994, 59, 7190.
[24] Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.
[25] Fujita, T.; Fuchigami, T. Tetrahedron Lett. 1996, 37, 4725.
[26] Hara, S.; Hatakeyama, T.; Chen, S.-Q.; Ishi-i, K.; Yoshida, M.; Sawaguchi, M.; Fukuhara, T.; Yoneda, N. J. Fluorine Chem. 1998, 87, 189.
[27] Haupt, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 242.
[28] (a) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Adv. Synth. Catal. 2010, 352, 2757.
(b) Sawamura, T.; Kuribayashi S.; Inagi, S.; Fuchigami, T. Org. Lett. 2010, 12, 644.
[29] (a) Amano, Y.; Nishiyama, S. Tetrahedron Lett. 2006, 47, 6505.
(b) Nishihama, Y.; Amano, Y.; Ogamino, T.; Nishiyama, S. Electrochemistry 2006, 74, 609.
(c) Kajiyama, D.; Saitoh, T.; Nishiyama, S. Electrochemistry 2013, 81, 319.
[30] (a) Amano, Y.; Nishiyama, S. Heterocycles 2008, 75, 1997.
(b) Amano, Y.; Inoue, K.; Nishiyama, S. Synlett 2008, 134.
(c) Izawa, T.; Nishiyama, S.; Yamamura, S. Tetrahedron 1994, 50, 13593.
(d) Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1.
(e) Inoue, K.; Ishikawa, Y.; Nishiyama, S. Org. Lett. 2010, 12, 436.
(f) Kajiyama, D.; Saitoh, T.; Yamaguchi, S.; Nishiyama, S. Synthesis 2012, 44, 1667.
(g) Kajiyama, D.; Inoue, K.; Ishikawa, Y.; Nishiyama, S. Tetrahedron 2010, 66, 9779.
[31] Möckel, R.; Babaoglu, E.; Hilt, G. Chem.-Eur. J. 2018, 24, 15781.
[32] (a) Broese, T.; Francke, R. Org. Lett. 2016, 18, 5896.
(b) Koleda, O.; Broese, T.; Noetzel, J.; Roemelt, M.; Suna, E.; Francke, R. J. Org. Chem. 2017, 82, 11669.

文章导航

/