高价碘试剂的有机电化学合成及应用研究进展
收稿日期: 2019-02-11
修回日期: 2019-03-10
网络出版日期: 2019-04-09
基金资助
甘肃省高等学校科学研究(No.2018B-091)和兰州石化职业技术学院教科研(No.JY2018-25)资助项目.
Recent Advances in Organic Electrochemical Synthesis and Application of Hypervalent Iodine Reagents
Received date: 2019-02-11
Revised date: 2019-03-10
Online published: 2019-04-09
Supported by
Project supported by the Scientific Research Projects of Colleges and Universities in Gansu Province (No. 2018B-091) and the Teaching and Scientific Research Project of Lanzhou Petrochemical Poly Technic (No. JY2018-25).
张怀远 , 唐蓉萍 , 石星丽 , 颉林 , 伍家卫 . 高价碘试剂的有机电化学合成及应用研究进展[J]. 有机化学, 2019 , 39(7) : 1837 -1845 . DOI: 10.6023/cjoc201902006
Anodic oxidation of aryl iodine compouds is a green and efficient method for the synthesis of hypervalent iodine reagents. This method replaces chemical reagents with electric current, avoiding the use of expensive and handle difficult oxidants such as m-CPBA, H2O2, oxone, selectfluor etc. Electrochemically generated hypervalent iodine reagents can not only promote fluorination, oxidative cyclization, but also be successfully applied in the total synthesis of natural products. In addition, recyclable aryl iodine mediator can be used to indirect anodic fluorination and easily separated from products. The organic electrochemical synthesis of hypervalent iodine reagents and their applications in various chemical transformations are reviewed.
[1] (a) "Hypervalent Iodine Chemistry:Modern Developments in Organic Synthesis" in Topics in Current Chemistry, Vol. 373, Ed.:Wirth, T., Springer-Verlag, Switzerland, 2016,
(b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
(c) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
(d) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
(e) Duan, Y.-N.; Jiang, S.; Han, Y.-C.; Sun, B.; Zhang, C. Chin. J. Org. Chem. 2016, 36, 1973(in Chinese). (段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973.)
(f) Zhang, H.; Tang, R.; Wu, J.; Hu, Y. Chemistry 2018, 681(in Chinese). (张怀远, 唐蓉萍, 伍家卫, 胡雨来, 化学通报, 2018, 681.)
(g) Ma, J.; Chen, L.; Yuan, Z.; Cheng, H. Chin. J. Org. Chem. 2018, 38, 1586(in Chinese). (马姣丽, 陈立成, 袁中文, 程辉成, 有机化学, 2018, 38, 1586.)
(h) Yan, Y.; Cui, C.; Li, Z. Chin. J. Org. Chem. 2018, 38, 2501(in Chinese). (闫溢哲, 崔畅, 李政, 有机化学, 2018, 38, 2501.)
[2] (a) Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. J. Am. Chem. Soc. 2017, 139, 4354.
(b) Fujita, M.; Miura, K.; Sugimura, T. Beilstein J. Org. Chem. 2018, 14, 659.
(c) Banik, S. M.; Mennie, K. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2017, 139, 9152.
[3] Smith, D. C.; Vitaku, E.; Njardarson, J. T. Org. Lett. 2017, 19, 3508.
[4] Hori, M.; Guo, J.-D.; Yanagi, T.; Nogi, K.; Sasamori, T.; Yorimitsu, H. Angew. Chem., Int. Ed. 2018, 57, 4663.
[5] (a) Zhang, H.; Huang, D.; Wang, K.-H.; Li, J.; Su, Y.; Hu. Y. J. Org. Chem. 2017, 82, 1600.
(b) Chi, Y.; Zhang, W.-X.; Xi, Z. Org. Lett. 2014, 16, 6274.
(c) Chi, Y.; Yan, H.; Zhang, W.-X.; Xi, Z. Chem.-Eur. J. 2017, 23, 757.
(d) Chi, Y.; Yan, H.; Zhang, W.-X.; Xi, Z. Org. Lett. 2017, 19, 2694.
(e) Alazet, S.; Vaillant, F. L.; Nicolai, S.; Courant, T.; Waser, J. Chem.-Eur. J. 2017, 23, 9501.
(f) Colomer, I.; Batchelor-McAuley, C.; Odell, B.; Donohoe, T. J.; Compton, R. G. J. Am. Chem. Soc. 2016, 138, 8855.
(g) Shen, H.; Deng, Q.; Liu, R.; Feng, Y.; Zheng, C.; Xiong, Y. Org. Chem. Front. 2017, 4, 1806.
(h) Wang, Z.; Zhong, J.; Zheng, C.; Fan, R. Org. Chem. Front. 2017, 4, 1005.
[6] Zhang, H.; Huang, D.; Wang, K.-H.; Li, J.; Su, Y.; Hu, Y. Org. Biomol. Chem. 2017, 15, 5337.
[7] Pluta, R.; Krach, P. E.; Cavallo, L.; Falivene, L.; Rueping, M. ACS Catal. 2018, 8, 2582.
[8] Zhang, H.; Wang, K.-H.; Wang, J.; Su, Y.; Huang, D.; Hu, Y. Org. Biomol. Chem. 2019, 17, 2940.
[9] Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. Chem.-Eur. J. 2016, 22, 4030.
[10] Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Angew. Chem., Int. Ed. 2016, 55, 413.
[11] Martínez, C.; Bosnidou, A. E.; Allmendinger, S.; Muñiz, K. Chem.- Eur. J. 2016, 22, 9929.
[12] Zhdankin, V. V. Hypervalent Iodine Chemistry:Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons, Chichester, UK, 2013, pp. 21~143.
[13] (a) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2018, 140, 11487.
(b) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
(c) Yan, M.; Kawamata, Y.; Baran, P. S. Angew. Chem., Int. Ed. 2018, 57, 4149.
(d) Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 6018.
(e) Elsherbini, M.; Wirth, T. Chem.-Eur. J. 2018, 24, 13399.
(f) Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 762.
(g) Chang, X.; Zhang, Q.; Guo, C. Org. Lett. 2019, 21, 10.
(h) Lian, F.; Sun, C.; Xu, K.; Zeng, C. Org. Lett. 2019, 21, 156.
[14] Stuart, D. R. Synlett 2017, 28, 275.
[15] (a) Bielawski, M.; Olofsson, B. Chem. Commun. 2007, 2521.
(b) Bielawski, M.; Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610.
(c) Bielawski, M.; Aili, D.; Olofsson, B. J. Org. Chem. 2008, 73, 4602.
(d) Merritt, E. A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052.
(e) Jalalian, N.; Olofsson, B. Tetrahedron 2010, 66, 5793.
(f) Bouma, M. J.; Olofsson, B. Chem.-Eur. J. 2012, 18, 14242.
[16] (a) Lindstedt, E.; Reitti, M.; Olofsson, B. J. Org. Chem. 2017, 82, 11909.
(b) Laudadio, G.; Gemoets, H. P. L.; Hessel, V.; Noël, T. J. Org. Chem. 2017, 82, 11735.
[17] Miller, L. L.; Hoffmann, A. K. J. Am. Chem. Soc. 1967, 89, 593.
[18] Hoffelner, H.; Lorch, H. W.; Wendt, H. J. Electroanal. Chem. 1975, 66, 183.
[19] (a) Peacock, M. J.; Pletcher, D. Tetrahedron Lett. 2000, 41, 8995.
(b) Peacock, M. J.; Pletcher, D. J. Electrochem. Soc. 2001, 148, D37.
[20] (a) Folgueiras-Amador, A. A.; Philipps, K.; Guilbaud, S.; Poelakker, J.; Wirth, T. Angew. Chem., Int. Ed. 2017, 56, 15446.
(b) Folgueiras-Amador, A. A.; Qian, X.-Y.; Xu, H.-C.; Wirth, T. Chem.-Eur. J. 2018, 24, 487.
(c) Pletcher, D.; Green, R. A.; Brown, R. C. D. Chem. Rev. 2018, 118, 4573.
(d) Folgueiras-Amador, A. A.; Wirth, T. J. Flow Chem. 2017, 7, 94.
(e) Watts, K.; Gattrell, W.; Wirth, T. Beilstein J. Org. Chem. 2011, 7, 1108.
[21] Schmidt, H.; Meinert, H. Angew. Chem. 1960, 72, 109.
[22] Rozhkov, I. N. Russ. Chem. Rev. 1976, 45, 615.
[23] Fuchigami, T.; Fujita, T. J. Org. Chem. 1994, 59, 7190.
[24] Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.
[25] Fujita, T.; Fuchigami, T. Tetrahedron Lett. 1996, 37, 4725.
[26] Hara, S.; Hatakeyama, T.; Chen, S.-Q.; Ishi-i, K.; Yoshida, M.; Sawaguchi, M.; Fukuhara, T.; Yoneda, N. J. Fluorine Chem. 1998, 87, 189.
[27] Haupt, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 242.
[28] (a) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Adv. Synth. Catal. 2010, 352, 2757.
(b) Sawamura, T.; Kuribayashi S.; Inagi, S.; Fuchigami, T. Org. Lett. 2010, 12, 644.
[29] (a) Amano, Y.; Nishiyama, S. Tetrahedron Lett. 2006, 47, 6505.
(b) Nishihama, Y.; Amano, Y.; Ogamino, T.; Nishiyama, S. Electrochemistry 2006, 74, 609.
(c) Kajiyama, D.; Saitoh, T.; Nishiyama, S. Electrochemistry 2013, 81, 319.
[30] (a) Amano, Y.; Nishiyama, S. Heterocycles 2008, 75, 1997.
(b) Amano, Y.; Inoue, K.; Nishiyama, S. Synlett 2008, 134.
(c) Izawa, T.; Nishiyama, S.; Yamamura, S. Tetrahedron 1994, 50, 13593.
(d) Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1.
(e) Inoue, K.; Ishikawa, Y.; Nishiyama, S. Org. Lett. 2010, 12, 436.
(f) Kajiyama, D.; Saitoh, T.; Yamaguchi, S.; Nishiyama, S. Synthesis 2012, 44, 1667.
(g) Kajiyama, D.; Inoue, K.; Ishikawa, Y.; Nishiyama, S. Tetrahedron 2010, 66, 9779.
[31] Möckel, R.; Babaoglu, E.; Hilt, G. Chem.-Eur. J. 2018, 24, 15781.
[32] (a) Broese, T.; Francke, R. Org. Lett. 2016, 18, 5896.
(b) Koleda, O.; Broese, T.; Noetzel, J.; Roemelt, M.; Suna, E.; Francke, R. J. Org. Chem. 2017, 82, 11669.
/
〈 |
|
〉 |