研究论文

交联壳聚糖微球负载铜水相催化Ullmann反应

展开
  • a 浙江省化工高效制造技术重点实验室 浙江大学化学工程与生物工程学院 杭州 310027;
    b 新加坡南洋理工大学化学与生物医学工程学院 新加坡 637459

收稿日期: 2019-01-14

  修回日期: 2019-03-25

  网络出版日期: 2019-04-11

基金资助

国家自然科学基金(No.21476194)、国家重点研发计划(No.2016YFB0301800)资助项目.

Cross-Linked Chitosan Bead Supported Copper Complex in Water as a Green and Efficient Catalytic Protocol for Ullmann Reaction

Expand
  • a Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027;
    b School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore

Received date: 2019-01-14

  Revised date: 2019-03-25

  Online published: 2019-04-11

Supported by

Project supported by the National Natural Science Foundation of China (No. 21476194), and the National Key Research and Development Program of China (No. 2016YFB0301800).

摘要

报道了一种交联壳聚糖微球负载铜在水相中催化Ullmann反应的催化体系,对催化剂进行了一系列表征,并考察了催化剂的底物适用性.该催化剂只需要进行简单过滤即可回收,重复使用十次后仍能保持良好的催化活性.

本文引用格式

吕小妹, 阮建成, 陈新志, 钱超 . 交联壳聚糖微球负载铜水相催化Ullmann反应[J]. 有机化学, 2019 , 39(6) : 1720 -1726 . DOI: 10.6023/cjoc201901018

Abstract

A green, efficient, and recyclable catalytic protocol for Ullmann C-N reaction in water was developed. The catalyst Chi-Gly@CuI was prepared by the cross-linking reaction of chitosan bead with glyoxal and subsequently anchored with copper salt. Chi-Gly@CuI bead of 0.3 mm in mean diameter possesses porous micro-structure demonstrated by scanning electron microscope (SEM). The structure of Chi-Gly@CuI was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and X-ray photoelectron spectroscopy (XPS). This catalytic protocol for Ullmann reaction in water exhibited high applicability, from which the corresponding coupling products were afforded in good to excellent yields. Chi-Gly@CuI could be easily separated from products by simple filtration almost without weight loss. Most notably, after 10 times of recycling, its catalytic activity and chemical stability were still maintained.

参考文献

[1] Ferlin, F.; Trombettoni, V.; Luciani, L.; Fusi, S.; Piermatti, O.; Santoro, S.; Vaccaro, L. Green Chem. 2018, 20, 1634.
[2] Bariwal, J.; Van der Eycken, E. Chem. Soc. Rev. 2013, 42, 9283.
[3] Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.
[4] Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem Rev 2002, 102, 1359.
[5] Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337.
[6] Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.
[7] Monnier, F.; Taillefer, M., Angew. Chem., Int. Ed. 2008, 47, 3096.
[8] Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.
[9] Klapars, A.; Antilla, J. C.; Huang, X. H.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727.
[10] Job, G. E.; Buchwald, L. Org. Lett. 2002, 4, 3703.
[11] Klapars, A.; Huang, X. H.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421.
[12] Ma, D. W.; Cai, Q. Synlett 2004, (1), 128.
[13] Cheng, D. P.; Gan, F. F.; Qian, W. X.; Bao, W. L. Green Chem. 2008, 10, 171.
[14] Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4, 581.
[15] Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793.
[16] Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69, 5578.
[17] Cristau, H. J.; Cellier, P. P.; Spindler, J. F.; Taillefer, M. Chem.-Eur. J. 2004, 10, 5607.
[18] Choudary, B. M.; Sridhar, C.; Kantam, M. L.; Venkanna, G. T.; Sreedhar, B. J. Am. Chem. Soc. 2005, 127, 9948.
[19] Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4120.
[20] Zhang, H.; Cai, Q.; Ma, D. W. J. Org. Chem. 2005, 70, 5164.
[21] Zhu, W.; Ma, D. W. J. Org. Chem. 2005, 70, 2696.
[22] Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742.
[23] Ma, D. W.; Cai, Q. A. Acc. Chem. Res. 2008, 41, 1450.
[24] Cassez, A.; Ponchel, A.; Hapiot, F.; Monflier, E. Org. Lett. 2006, 8, 4823.
[25] Xue, C. H.; Palaniappan, K.; Arumugam, G.; Hackney, S. A.; Liu, J.; Liu, H. Y. Catal. Lett. 2007, 116, 94.
[26] Ngah, W. S. W.; Fatinathan, S. Chem. Eng. J. 2008, 143, 62.
[27] Baig, R. B. N.; Varma, R. S. Green Chem. 2013, 15, 1839.
[28] Dekamin, M. G.; Azimoshan, M.; Ramezani, L. Green Chem. 2013, 15, 811.
[29] Zhang, G. F.; Luan, Y. X.; Han, X. W.; Wang, Y.; Wen, X.; Ding, C. R.; Gao, J. R. Green Chem. 2013, 15, 2081.
[30] Baig, R. B. N.; Nadagouda, M. N.; Varma, R. S. Green Chem. 2014, 16, 2122.
[31] Shen, C.; Xu, J.; Yu, W. B.; Zhang, P. F. Green Chem. 2014, 16, 3007.
[32] Yang, B.; Mao, Z. X.; Zhu, X. H.; Wan, Y. Q. Catal. Commun. 2015, 60, 92.
[33] Cui, Q.; Zhao, H.; Luo, G.; Xu, J. Ind. Eng. Chem. Res. 2017, 56, 143.
[34] Ma, L.; Su, Y.; Chen, J.; Xu, J. Ind. Eng. Chem. Res. 2017, 56, 12655.
[35] Su, Y.; Ma, L.; Chen, J.; Xu, J. Carbohydr. Polym. 2017, 175, 113.
[36] Tong, J. H.; Zhen, L.; Xia, C. G. J. Mol. Catal. A 2005, 231(1-2), 197.
[37] Anuradha; Kumari, S.; Pathak, D. D. Tetrahedron Lett. 2015, 56, 4135.
[38] Keshipour, S.; Mirmasoudi, S. S. Carbohydr. Polym. 2018, 196, 494.
[39] Gioia, C.; Ricci, A.; Bernardi, L.; Bourahla, K.; Tanchoux, N.; Robitzer, M.; Quignard, F. Eur. J. Org. Chem. 2013, (3), 588.
[40] Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725.
[41] Krause, N. Curr. Opin. Green Sustainable Chem. 2017, 7, 18.
[42] La Sorella, G.; Strukul, G.; Scarso, A. Green Chem 2015, 17, 644.
[43] Lipshutz, B. H.; Ghorai, S.; Cortes-Clerget, M. Chemistry 2018, 24, 6672.
[44] Rani, D.; Singla, P.; Agarwal, J. Carbohydr. Polym. 2018, 202, 355.
[45] Ge, X.; Qian, C.; Chen, X. Z. Tetrahedron:Asymmetry 2014, 25, 1450.
[46] Ge, X.; Qian, C.; Chen, Y. B.; Chen, X. Z. Tetrahedron:Asymmetry 2014, 25, 596.
[47] Ge, X.; Chen, X. Z.; Qian, C.; Zhou, S. D. RSC Adv. 2016, 6, 58898.
[48] Ge, X.; Chen, X. Z.; Qian, C.; Zhou, S. D. RSC Adv. 2016, 6, 29638.
[49] Ge, X.; Sun, F.; Liu, X.; Chen, X.; Qian, C.; Zhou, S. New J. Chem. 2017, 41, 13175.
[50] Liu, X.; Chang, S.; Chen, X.; Ge, X.; Qian, C. New J. Chem. 2018, 42, 16013.
[51] Sowmya, A.; Meenakshi, S. Int. J. Biol. Macromol. 2014, 64, 224.
[52] Saha, S.; Das, S.; Sen, D.; Ghorai, U. K.; Mazumder, N.; Gupta, B. K.; Chattopadhyay, K. K. J. Mater. Chem. C 2015, 3, 6786.
[53] Kumar, M.; Bhatt, V.; Nayal, O. S.; Sharma, S.; Kumar, V.; Thakur, M. S.; Kumar, N.; Bal, R.; Singh, B.; Sharma, U. Catal. Sci. Technol. 2017, 7, 2857.
[54] Zeng, L. X.; Chen, Y. F.; Zhang, Q. Y.; Guo, X. M.; Peng, Y. N.; Xiao, H. J.; Chen, X. C.; Luo, J. W. Carbohydr. Polym. 2015, 130, 333.
[55] Zhou, Y. T.; Branford-White, C.; Nie, H. L.; Zhu, L. M. Colloid Surface B 2009, 74, 244.

文章导航

/