综述与进展

亚砜脱氧还原方法研究进展

  • 李伟林 ,
  • 陈炫颖 ,
  • 郑天骄 ,
  • 邹祺 ,
  • 陈文博
展开
  • 上海电力大学 上海市电力材料防护与新材料重点实验室 上海 200090

收稿日期: 2019-01-18

  修回日期: 2019-03-30

  网络出版日期: 2019-04-16

基金资助

上海市自然科学基金(No.17ZR1447100)和上海市科学技术委员会(No.14DZ2261000)资助项目.

Research Progress on Reduction of Sulfoxides to Thiothers

  • Li Weilin ,
  • Chen Xuanying ,
  • Zheng Tianjiao ,
  • Zou Qi ,
  • Chen Wenbo
Expand
  • Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090

Received date: 2019-01-18

  Revised date: 2019-03-30

  Online published: 2019-04-16

Supported by

Project supported by the Natural Science Foundation of Shanghai City (No. 17ZR1447100) and the Science and Technology Commission of Shanghai Munic-ipality (No. 14DZ2261000).

摘要

亚砜还原为硫醚作为有机合成中一类重要的转化,其应用一直受到人们的广泛关注.随着金属有机的发展,研究人员发展了许多条件温和、实用有效的亚砜还原方法.从还原剂的种类出发,详细介绍了近二十年里亚砜脱氧还原反应的研究进展,分析了这些还原体系所具有的优势及其潜在不足,并探讨了部分反应机理,最后对亚砜还原领域的发展进行了展望.

本文引用格式

李伟林 , 陈炫颖 , 郑天骄 , 邹祺 , 陈文博 . 亚砜脱氧还原方法研究进展[J]. 有机化学, 2019 , 39(9) : 2443 -2457 . DOI: 10.6023/cjoc201901028

Abstract

As one of the most important transformations in organic synthesis, deoxygenation reduction of sulfoxides to thioethers has attracted wide attention in researches and applications. With the development of organicmetallic chemistry, many mild and practical methods have been developed to reduce sulfoxides. In this review, based on the types of the reducing agents, the research progress on the deoxygenation reduction of sulfoxides to thiothers in recent 20 years is summarized. In addition, the advantages and disadvantages of these reduction systems, some reaction mechanisms and the prospects of research in this field are discussed.

参考文献

[1] Chen, C.; Li, Y.; Xiao, Y.; Zhu, L.; Cheng, C.; Liu, Y. Chin. J. Org. Chem. 2011, 31, 925(in Chinese). (陈春玉, 李毅, 肖英, 朱林, 程长明, 刘杨, 有机化学, 2011, 31, 925.)
[2] (a) McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K. Chem. Rev. 2007, 107, 5841.
(b) Rickard, D.; Luther Ⅲ, G. W. Chem. Rev. 2007, 107, 514.
[3] Michaelis, A.; Godchaux, E. Ber. 1891, 24, 757.
[4] Loth, F.; Michaelis, A. Ber. 1894, 27, 2540.
[5] Madesclaire, M. Tetrahedron Lett. 1988, 44, 6537.
[6] Still, N. W. J. In Comprehensive Organic Synthesis, Vol. 8, Ed.:Trost, B. M., Pergamon Press, Oxford, 1991, p. 403.
[7] Kukushkin, V. Y. Coord. Chem. Rev. 1995, 139, 375.
[8] Firouzabadia, H.; Jamalianb, A. J. Sulfur Chem. 2008, 29, 53.
[9] Gaumont, A. C.; Gulea, M. S.; Reboul, V. Comprehensive Organic Synthesis Ⅱ, 2nd ed., Vol. 8, Elsevier, Amsterdam, 2014, p. 535.
[10] Shiri, L.; Kazemi, M. Res. Chem. Intermed. 2017, 43, 6007.
[11] Wakisaka, M.; Hatanaka, M.; Nitta, H.; Hatamura, M.; Ishizuka,T. Synthesis. 1980, 67.
[12] Faucher, A.; Grand-Maitre, C. Synth. Commun. 2003, 33, 3503.
[13] Sanz, R.; Escribano, J.; Aguado, R.; Pedrosa, M. R.; Arnáiz, F. J. Synthesis 2004, 35, 1629.
[14] Kikuchi, S.; Konishi, H.; Hashimoto, Y. Tetrahedron Lett. 2005, 61, 3587.
[15] Iranpoor, N.; Firouzabadi, H.; Jamalian, A. Synlett 2005, 36, 1447.
[16] Hua, G.; Woollins, J. D. Tetrahedron Lett. 2007, 48, 3677.
[17] Bahrami, K.; Khodaei, M. M.; Khedri, M. Chem. Lett. 2007, 36, 1324.
[18] Bagherzadeh, M.; Ghazali-Esfahan, S. New J. Chem. 2012, 36, 971.
[19] Jang, Y.; Kim, K. T.; Jeon, H. B. J. Org. Chem. 2013, 78, 6328.
[20] Ghorbani-Vaghei, R.; Shiri, L.; Ghorbani-Choghamarani, A. C. R. Chim. 2014, 17, 1002.
[21] Zhao, X.; Zheng, X.; Yang, B.; Sheng, J.; Lu, K. Org. Biomol. Chem. 2018, 16, 1200.
[22] Karimi, B.; Zareyee, D. Synthesis 2003, 34, 335.
[23] Harrison, D. J.; Tam, N. C.; Vogels, C. M.; Langler, R. F.; Baker, R. T.; Deckenc, A.; Westcott, S. A. Tetrahedron Lett. 2004, 45, 8493.
[24] Chandra, R. D.; Herbert, B. C. J. Chem. Res. 2006, 10, 642.
[25] Fernandes, A. C.; Carlos, C. R. Tetrahedron Lett. 2007, 48, 9176.
[26] Zhang, J.; Gao, X.; Zhang, C.; Luan, J.; Zhao, D. Synth. Commun. 2010, 40, 1794.
[27] Fernandes, A. C.; Fernandes, J. A.; Romao, C. C.; Veiros, L. F.; Calhorda, M. J. Organometallics 2010, 29, 5517.
[28] Yakabe, S.; Morimoto, M. T. Synth. Commun. 2011, 41, 2251.
[29] Enthaler, S.; Krackl, S.; Irran, E.; Inoue, S. Catal. Lett. 2012, 142, 1003.
[30] Enthaler, S. Catal. Lett. 2012, 142, 1306.
[31] Shimizu, M.; Shibuya, K.; Hayakawa, R. Synlett 2000, 10, 1437.
[32] Firouzabadi, H.; Iranpoor, N.; Jafapour, M. J. Sulf. Chem. 2005, 26, 313.
[33] Ternois, J.; Guillen, F.; Piacenza, G.; Rose, S. J.; Plaquevent, C.; Coquerel, G. Org. Proc. Res. Develop. 2008, 12, 614.
[34] Bahrami, K.; Khodaei, M. M.; Karimi, A. Synthesis 2008, 16, 2543.
[35] Bahrami, K.; Khodaei, M. M.; Sheikh, A. M. J. Org. Chem. 2010, 75, 6208.
[36] Bahrami, K.; Khodaei, M. M.; Sohrabnezhad, S. Tetrahedron Lett. 2011, 52, 6420.
[37] Zarei, M.; Ameri, A. M.; Jamalian, A. J. Sulfur Chem. 2013, 34, 259.
[38] Atabaki, F.; Abedini, E.; Shokrolahi, A. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1169.
[39] Mohanazadeh, F.; Veisi, H.; Sedrpoushan, A.; Zolfigol, M. A.; Golmohammad, F.; Hemmati, S.; Hashemie, M. J. Sulfur Chem. 2014, 35, 7.
[40] Yoo, B. W.; Park, J.; Shin, H. J.; Yoon, C. M. J. Sulfur Chem. 2017, 38, 597.
[41] Karimi, B.; Zareyee, D. Synthesis 2003, 1875.
[42] Karimi, B.; Zareyee, D. Synthesis 2003, 335.
[43] Jabbari, A.; Zarei, M.; Jamaleddini, A. J. Sulfur Chem. 2012, 33, 413.
[44] Abbasi, M.; Mohammadizadeh, M. R.; Moradi, Z. Tetrahedron Lett. 2015, 56, 6610.
[45] Garcia, N.; Fernandez-Rodriguez, M. A.; Garcia-Garcia, P.; Pedrosa, M. R.; Arnaiz, F. J.; Sanz, R. RSC Adv. 2016, 6, 27083.
[46] Fernandes, A. C.; Romao, C. C. Tetrahedron 2006, 62, 9650.
[47] Sousa, S. C. A.; Fernandes, A. C. Tetrahedron Lett. 2009, 50, 6872.
[48] Cabrita, S. I.; Sousa, C. A.; Fernandes, A. C. Tetrahedron Lett. 2010, 51, 6132.
[49] Enthaler, S. A. Catal. Sci. Technol. 2011, 1, 104.
[50] Enthaler, S.; Weidauer, M. Catal. Lett. 2011, 141, 833.
[51] Enthaler, S. Chem. Cat. Chem. 2011, 3, 666.
[52] Sousa, S. C. A.; Bernardo, J. R.; Wolff, M.; Machura, B.; Fer-nandes, A. C. Eur. J. Org. Chem. 2014, 46, 1855.
[53] Ding, F.; Jiang, Y.; Gan, S.; Bao, R. L. Y.; Lin, K.; Shi, L. Eur. J. Org. Chem. 2017, 24, 3427.
[54] Porwal, D.; Oestreich, M. Synthesis 2017, 49, 4698.
[55] Firouzabadi, H.; Jamalian, A. Phosphorus Sulfur Relat. Elem. 2001, 170, 211.
[56] Shockravi, A.; Rostami, E.; Heidaryan, D.; Fattahi, H. Iran. J. Chem. Chem. Eng. 2008, 27, 129.
[57] Oh, K.; Knabe, W. E. Tetrahedron Lett. 2009, 65, 2966.
[58] Yoo, B. W.; Yu, B. R.; Yoon, C. M. J. Sulfur Chem. 2015, 36, 358.
[59] Woo, Y.; Byung, S.; Min, S.; Chol, P. M. Synth. Commun. 2007, 37, 3089.
[60] Yoo, B. W.; Park, M. C.; Song, M. S. Synth. Commun. 2007, 37, 4079.
[61] Yoo, B. W.; Kim, H. M.; Kim, D. Synth. Commun. 2013, 43, 2057.
[62] Yoo, B. W.; Lee, M. K.; Yoon, C. M. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 807.
[63] Yoo, B. W.; Choi, K. H.; Kim, D. Y.; Choi, K. I.; Kim, J. H. Synth. Commun. 2003, 33, 53.
[64] Zhang, J.; Gao, X.; Zhang, C.; Luan, J.; Zhao, D. Synth. Commun. 2010, 40, 1794.
[65] Raju, B. R.; Devi, G.; Nongpluh, Y. S.; Saikia, A. K. Synlett 2005, 358.
[66] Khurana, J. M.; Sharma, V. S.; Chacko, A. Tetrahedron Lett. 2007, 63, 966.
[67] Yoo, B. W.; Song, M. S.; Park, M. C. Bull. Korean Chem. Soc. 2007, 28, 171.
[68] Gurpreet, S.; Bhatia, G. S.; Graczyk, P. P. Tetrahedron Lett. 2004, 45, 5193.
[69] Garcia, N.; Garcia-Garcia, P.; Fernandez-Rodriguez, M. A.; Rubio, R.; Pedrosa, M. R.; Arnaiz, F. J.; Sanz, R. Adv. Synth. Catal. 2012, 354, 321.
[70] Garcia, N.; Garcia-Garcia, P.; Fernandez-Rodriguez, M. A.; Rubio, R. M.; Pedrosa, R.; Arnaiz, F. J.; Sanz, R. Green Chem. 2013, 15, 999.
[71] Abbasi, M.; Mohammadizadeh, M. R.; Moradi, Z. Bull. Chem. Soc. Jpn. 2016, 89, 405.
[72] Mitsudome, T.; Takahashi, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Angew. Chem. 2014, 126, 8488.
[73] Touchy, A. S.; Hakim-Siddiki, S. M. A.; Onodera, W.; Kon, K.; Shimizu, K. Green Chem. 2016, 18, 2554.
[74] Uematsu, T.; Miyamoto, Y.; Ogasawara, Y.; Suzuki, K.; Yamaguchi, K.; Mizuno, N. Catal. Sci. Technol. 2017, 7, 1912.
[75] Sharma, D. R.; Alistair, N. D.; King, W. T.; Shepherd, S. D.; Christopher, C. R.; Allen, R. A.; Holt, H. R. L.; Howard, D. Org. Biomol. Chem. 2004, 2, 554.
[76] Nakayama, J.; Tai, A.; Iwasa, S.; Furuya, T.; Sugihara, Y. Tetrahedron Lett. 2005, 46, 1395.
[77] Cubbage, J. W.; Tetzlaff, T. A.; Groundwater, H.; McCulla, R. D.; Nag, M.; Jenks, W. S. J. Org. Chem. 2001, 66, 8621.
[78] Suzuki, K.; Jeong, J.; Yamaguchi, K.; Mizuno, N. New J. Chem. 2015, 47, 1014.
[79] Sousa, S. C. A.; Bernardo, J. R.; Romao, C. C.; Fernandes, A. C. Tetrahedron Lett. 2012, 68, 8194.
[80] Kominami, H.; Nakanishi, K.; Yamamoto, S.; Imamura, K.; Hashimoto, K. Catal. Commun. 2014, 54, 100.

文章导航

/