研究论文

钴催化芳香族烯烃的脱氢硅化反应

  • 程彪 ,
  • 陆鹏 ,
  • 赵家金 ,
  • 陆展
展开
  • 浙江大学化学系 杭州 310058

收稿日期: 2019-03-10

  修回日期: 2019-04-03

  网络出版日期: 2019-04-16

基金资助

国家自然科学基金(No.21772171)、国家重点基础研究发展计划(No.2015CB856600)、浙江省自然科学基金(No.LR19B020001)、浙江大学曹光彪高科技发展基金和浙江大学基本科研业务费资助项目.

Cobalt-Catalyzed Dehydrogenative Silylation of Vinylarenes

  • Cheng Biao ,
  • Lu Peng ,
  • Zhao Jiajin ,
  • Lu Zhan
Expand
  • Department of Chemistry, Zhejiang University, Hangzhou 310058

Received date: 2019-03-10

  Revised date: 2019-04-03

  Online published: 2019-04-16

Supported by

Project supported by the National Natural Science Foundation of China (No. 21772171), the National Basic Research Program of China (973 Program, No. 2015CB856600), the Zhejiang Provincial Natural Science Foundation (No. LR19B020001), the K. P. Chao's High Technology Development Foundation of Zhejiang University and the Fundamental Research Funds for the Central Universities.

摘要

描述了一种钴催化的高化学、区域、立体选择性的芳香族烯烃的脱氢硅化反应.亚胺吡啶咪唑啉的钴络合物可以有效促进该反应,并能显著提高该反应的化学选择性.该方法利用地球丰产过渡金属、廉价易得的烯烃和硅烷来构建具有高附加值的烯基硅烷.文中同时描述了该反应可放大到克级规模制备及可能的反应机理.

本文引用格式

程彪 , 陆鹏 , 赵家金 , 陆展 . 钴催化芳香族烯烃的脱氢硅化反应[J]. 有机化学, 2019 , 39(6) : 1704 -1710 . DOI: 10.6023/cjoc201903018

Abstract

A highly chemo-, regio-, and stereo-selective cobalt-catalyzed dehydrogenative silylation of vinylarenes was described. The imidazoline iminopyridine cobalt complex could promote this reaction effectively and improve the chemoselectivity dramatically. This protocol used earth-abundant transition metal, readily available alkenes and hydrosilanes to construct valuable vinylsilanes. The reaction could be carried out in gramscale and the proposed mechanism was also described.

参考文献

[1] (a) Chan, T. H.; Fleming, I. Synthesis 1979, 761.
(b) Blumenkopf, T. A.; Overman, L. E. Chem. Rev. 1986, 86, 857.
(c) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375.
(d) Fleming, I.; Barbero, A.; Water, D. Chem. Rev. 1997, 97, 2063.
[2] (a) McAtee, J. R.; Martin, S. E. S.; Ahneman, D. T.; Johnson, K. A.; Watson, D. A. Angew. Chem., Int. Ed. 2012, 51, 3663.
(b) Martin, S. E. S.; Watson, D. A. J. Am. Chem. Soc. 2013, 135, 13330.
[3] (a) Na, Y.; Chang, S. Org. Lett. 2000, 2, 1887.
(b) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2001, 123, 12726.
(c) Kawanami, Y.; Sonoda, Y.; Mori, T.; Yamamoto, K. Org. Lett. 2002, 4, 2825.
(d) Denmark, S. E.; Pan, W. Org. Lett. 2002, 4, 4163.
(e) Brunner, H. Angew. Chem., Int. Ed. 2004, 43, 2749.
(f) Aricó, C. S.; Cox, L. R. Org. Biomol. Chem. 2004, 2, 2558.
(g) Menozzi, C.; Dalko, P. I.; Cossy, J. J. Org. Chem. 2005, 70, 10717.
(h) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2005, 127, 17644.
(i) Maifeld, S. V.; Tran, M. N.; Lee, D. Tetrahedron Lett. 2005, 46, 105.
(j) Berthon-Gelloz, G.; Schumers, J.-M.; De Bo, G.; Markó, I. E. J. Org. Chem. 2008, 73, 4190.
(k) Sore, H. F.; Blackwell, D. T.; MacDonald, S. J. F.; Spring, D. R. Org. Lett. 2010, 12, 2806.
(l) Ding, S.-T.; Song, L.-J.; Chung, L. W.; Zhang, X.-H.; Sun, J.-W.; Wu, Y.-D. J. Am. Chem. Soc. 2013, 135, 13835.
(m) Guo, J.; Lu, Z. Angew. Chem., Int. Ed. 2016, 55, 10835.
[4] (a) Pietraszuk, C.; Fischer, H.; Kujawa, M.; Marciniec, B. Tetrahedron Lett. 2001, 42, 1175.
(b) Denmark, S. E.; Yang, S.-M. Org. Lett. 2001, 3, 1749.
[5] (a) Takai, K.; Kataoka, Y.; Okazoe, T.; Utimoto, K. Tetrahedron Lett. 1987, 28, 1443.
(b) Murthi, K. K.; Salomon, R. G. Tetrahedron Lett. 1994, 35, 517.
(c) Hodgson, D. M.; Comina, P. J. Tetrahedron Lett. 1994, 35, 9469.
(d) Itami, K.; Nokami, T.; Yoshida, J.-I. Org. Lett. 2000, 2, 1299.
(e) McNulty, J.; Das, P. Chem. Commun. 2008, 1244.
(f) Mu, Q.-C.; Wang, X.-B.; Ye, F.; Sun, Y.-L.; Bai, X.-F.; Chen, J.; Xia, C.-G.; Xu, L.-W. Chem. Commun. 2018, 54, 12994.
[6] (a) Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2015, 137, 13244.
(b) Ibrahim, A. D.; Entsminger, S. W.; Zhu, L.-Y.; Fout, A. R. ACS Catal. 2016, 6, 3589.
(c) Jakobsson, K.; Chu, T.; Nikonov, G. I. ACS Catal. 2016, 6, 7350.
(d) Raya, B.; Jing, S.; Balasanthiran, V.; RajanBabu, T. V. ACS Catal. 2017, 7, 2275.
(e) Chen, Y.-J.; Ji, S.-F.; Sun, W.-M.; Chen, W.-X.; Dong, J.-C.; Wen, J.-F.; Zhang, J.; Li, Z.; Zheng, L.-R.; Chen, C.; Peng, Q.; Wang, D.-S.; Li, Y.-D. J. Am. Chem. Soc. 2018, 140, 7407.
(f) Liu, J.-X.; Chen, W.-F.; Li, J.-F.; Cui, C.-M. ACS Catal. 2018, 8, 2230.
[7] (a) Hori, Y.; Mrrsudo, T.; Watanabe, Y. Bull. Chem. Soc. Jpn. 1988, 61, 3011.
(b) Christ, M. L.; Sabo-Etienne, S.; Chaudret, B. Organometallics 1995, 14, 1082.
(c) Bokka, A.; Jeon, J. Org. Lett. 2016, 18, 5324.
[8] (a) Millan, A.; Towns, E.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1981, 673.
(b) Millan, A.; Fernandez, M.-J.; Bentz, P.; Maitlis, P. M. J. Mol. Catal. 1984, 26, 89.
(c) Doyle, M. P.; Devora, G. A.; Nefedov, A. O.; High, K. G. Organometallics 1992, 11, 549.
(d) Takeuchi, R.; Yasue, H. Organometallics 1996, 15, 2098.
(e) Truscott, B. J.; Slawin, A. M. Z.; Nolan, S. P. Dalton Trans. 2013, 42, 270.
[9] LaPointe, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 906.
[10] (a) Fernández, M. J.; Esteruelas, M. A.; Jlménez, M. S.; Oro, L. A. Organometallics 1986, 5, 1519.
(b) Oro, L. A.; Fernandez, M. J.; Esteruelas, M. A.; Jimenez, M. S. J. Mol. Catal. 1986, 37, 151.
(c) Tanke, R. S.; Crabtree, R. H. Organometallics 1991, 10, 415.
(d) Lu, B.; Falck, J. R. J. Org. Chem. 2010, 75, 1701.
(e) Cheng, C.; Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2013, 52, 8984.
[11] Sprengers, J. W.; de Greef, M.; Duin, M. A.; Elsevier, C. J. Eur. J. Inorg. Chem. 2003, 3811.
[12] Jiang, Y.; Blacque, O.; Fox, T.; Frech, C. M.; Berke, H. Chem.-Eur. J. 2009, 15, 2121.
[13] Nakamura, S.; Yonehara, M.; Uchiyama, M. Chem.-Eur. J. 2008, 14, 1068.
[14] (a) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290.
(b) Du, X.-Y.; Huang, Z. ACS Catal. 2017, 7, 1227.
(c) Zhang, J.-H.; Hao, X.-Q.; Wang, Z.-L.; Ren, C.-J.; Niu, J.-L.; Song, M.-P. Chin. J. Org. Chem. 2017, 37, 1237 (in Chinese).(张家恒, 郝新奇, 王正龙, 任常久, 牛俊龙, 宋毛平, 有机化学, 2017, 37, 1237.)
(d) Gu, Z.-Y.; Ji, S.-J. Acta Chim. Sinica 2018, 76, 347 (in Chinese).(顾正洋, 纪顺俊, 化学学报, 2018, 76, 347.)
[15] Nesmeyanov, A. N.; Freidlina, R. K.; Chukovskaya, E. C.; Petrova, R. G.; Belyavsky, A. B. Tetrahedron 1962, 17, 61.
[16] (a) Kakiuchi, F.; Tanaka, Y.; Chatani, N.; Murai, S. J. Organomet. Chem. 1993, 456, 45.
(b) Naumov, R. N.; Itazaki, M.; Kamitani, M.; Nakazawa, H. J. Am. Chem. Soc. 2012, 134, 804.
(c) Marciniec, B.; Kownacka, A.; Kownacki, I.; Taylor, R. Appl. Catal. A:General 2014, 486, 230.
(d) Sunada, Y.; Noda, D.; Soejima, H.; Tsutsumi, H.; Nagashima, H. Organometallics 2015, 34, 2896.
(e) Du, X.-Y.; Zhang, Y.-L.; Peng, D.-J.; Huang, Z. Angew. Chem., Int. Ed. 2016, 55, 6671.
[17] (a) Marciniec, B.; Maciejewski, H.; Kownacki, I. J. Mol. Catal. A:Chemical 1998, 135, 223.
(b) Maciejewski, H.; Marciniec, B.; Kownacki, I. J. Organomet. Chem. 2000, 597, 175.
[18] Takeshita, K.; Seki, Y.; kawamoto, K.; Murai, S.; Sonoda, N. J. Org. Chem. 1987, 52, 4864.
[19] Atienza, C. C. H.; Diao, T.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Boyer, J. L.; Roy, A. K.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136, 12108.
[20] Gorczyński, A.; Zaranek, M.; Witomska, S.; Bocian, A.; Stefankiewicz, A. R.; Kubicki, M.; Patroniak, V.; Pawluc, P. Catal. Commun. 2016, 78, 71.
[21] (a) Wang, C.; Teo, W. J.; Ge, S.-Z. ACS Catal. 2017, 7, 855.
(b) Liu, Y.; Deng, L. J. Am. Chem. Soc. 2017, 139, 1798.
(c) Gao, Y.-F.; Wang, L.-J.; Deng, L. ACS Catal. 2018, 8, 9637.
(d) Basu, D.; Gilbert-Wilson, R.; Gray, D. L.; Rauchfuss, T. B. Organometallics 2018, 37, 2760.
(e) Sanagawa, A.; Nagashima, H. Organometallics 2018, 37, 2859.
[22] For selected reviews on earth-abundant transition metal-catalyzed asymmetric hydrofunctionalization of alkenes and alkynes, see:
(a) Chen, J.-H.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
(b) Chen, J.-H.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
[23] For hydroboration of alkenes and alkynes, see:(a) Chen, J.-H.; Xi, T.; Lu, Z. Org. Lett. 2014, 16, 6452.
(b) Chen, J.-H.; Xi, T.; Ren, X.; Cheng, B.; Guo, J.; Lu, Z. Org. Chem. Front. 2014, 1, 1306.
(c) Zhang, H.-Y.; Lu, Z. ACS Catal. 2016, 6, 6596.
(d) Xi, T.; Lu, Z. ACS Catal. 2017, 7, 1181.
(e) Chen, X.; Cheng, Z.-Y.; Lu, Z. Org. Lett. 2017, 19, 969.
(f) Chen, C.-H.; Shen, X.-Z.; Chen, J.-H.; Hong, X.; Lu, Z. Org. Lett. 2017, 19, 5422.
(g) Guo, J.; Cheng, B.; Shen, X.-Z.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 15316.
(h) Chen, X.; Cheng, Z.-Y.; Guo, J.; Lu, Z. Nat. Commun. 2018, 9, 3939.
[24] For hydrosilylation of alkenes and alkynes, see:
(a) Chen, J.-H.; Cheng, B.; Cao, M.-Y.; Lu, Z. Angew. Chem., Int. Ed. 2015, 54, 4661.
(b) Guo, J.; Lu, Z. Angew. Chem., Int. Ed. 2016, 55, 10835.
(c) Xi, T.; Lu, Z. J. Org. Chem. 2016, 81, 8858.
(d) Guo, J.; Shen, X.-Z.; Lu, Z. Angew. Chem., Int. Ed. 2017, 56, 615.
(e) Cheng, B.; Lu, P.; Zhang, H.-Y.; Cheng, X.-P.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439.
(f) Cheng, B.; Liu, W.-B.; Lu, Z. J. Am. Chem. Soc. 2018, 140, 5014.
(g) Cheng, Z.-Y.; Xing, S.-P.; Guo, J.; Cheng, B.; Hu, L.-F.; Zhang, X.-H.; Lu, Z. Chin. J. Chem. 2019, 37, 457.
(h) Guo, J.; Wang, H.-L.; Xing, S.-P. Hong, X.; Lu, Z. Chem 2019, 5, 881.
[25] For asymmetric hydrogenation of alkenes, see:Chen, J.-H.; Chen, C.-H.; Ji, C.-L.; Lu, Z. Org. Lett. 2016, 18, 1594.
[26] Zhang, L.; Zuo, Z.-Q.; Wan, X.-L.; Huang, Z. J. Am. Chem. Soc. 2014, 136, 15501.
[27] Komiyama, T.; Minami, Y.; Hiyama, T. ACS Catal. 2017, 7, 631.
[28] Guo, J.; Chen, J.-H.; Lu, Z. Chem. Commun. 2015, 51, 5725.
[29] JoongLee, S.; KyeuPark, M.; HeeHan, B. Silicon Chemistry 2002, 1, 41.
[30] Ramírez-Oliva, E.; Hernández, A.; Martínez-Rosales, J. M.; Aguilar-Elguezabal, A.; Herrera-Pérez, G.; Cervantes, J. ARKIVOC 2006, 126.
[31] Karabelas, K.; Hallberg, A. J. Org. Chem. 1986, 51, 5286.

文章导航

/