综述与进展

马来酰亚胺双键参与的官能化反应研究进展

  • 杨振华 ,
  • 祝家楠 ,
  • 文彩月 ,
  • 葛迎香 ,
  • 赵圣印
展开
  • 东华大学化学化工与生物工程学院 生态纺织教育部重点实验室 上海 201620

收稿日期: 2019-02-14

  修回日期: 2019-04-10

  网络出版日期: 2019-04-19

基金资助

上海市自然科学基金(No.15ZR1401400)和东华大学国家级大学生创新性实验(2018)资助项目.

Recent Advances in Functionalization of Double Bond Based on Maleimides

  • Yang Zhenhua ,
  • Zhu Jianan ,
  • Wen Caiyue ,
  • Ge Yingxiang ,
  • Zhao Shengyin
Expand
  • Key Laboratory of Science and Technology of Exo-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620

Received date: 2019-02-14

  Revised date: 2019-04-10

  Online published: 2019-04-19

Supported by

Project supported by the Shanghai Municipal Natural Science Foundation (No. 15ZR1401400) and the National Undergraduate Training Program for Innovation and Entrepreneurship in Donghua University (2018).

摘要

马来酰亚胺是一类海洋天然生物碱、生物活性分子和功能材料的重要结构母核,并能转化为琥珀酰亚胺、四氢吡咯及2-吡咯酮等化合物,具有广泛的应用价值.以马来酰亚胺为合成子构建含有马来酰亚胺和琥珀酰亚胺结构单元的化合物已成为有机合成研究热点之一.对马来酰亚胺双键参与的官能化反应进行了综述,重点在马来酰亚胺的Michael加成、氧化偶联和环加成反应.

本文引用格式

杨振华 , 祝家楠 , 文彩月 , 葛迎香 , 赵圣印 . 马来酰亚胺双键参与的官能化反应研究进展[J]. 有机化学, 2019 , 39(9) : 2412 -2427 . DOI: 10.6023/cjoc201902012

Abstract

Maleimide, a common motif in a variety of natural alkaloids, has been extensively investigated due to its noteworthy biological activities and optical properties. Additionally, it can be transformed into many important heterocyclic frameworks such as succinimides, pyrrolidines, and 2-pyrrolidones. Thus, a great deal of attention has been focused on the development of new synthetic routes to access polyfunctionalized maleimides. In this article, the recent research progress in functionalization of double bond is reviewed based on maleimides according to Michael addition, oxidative coupling and cycloaddition reaction.

参考文献

[1] Lavrard, H.; Rodriguez, F.; Delfourne, E. Bioorg. Med. Chem. Lett. 2014, 22, 1961.
[2] Chien, S.-C.; Chen, M.-L.; Kuo, H.-T.; Tsai, Y.-C.; Lin, B.-F.; Kuo, Y.-H. J. Agric. Food Chem. 2008, 56, 7017.
[3] (a) Ho, S.-Y.; Alam, J.; Jeyaraj, D.-A.; Wang, W.; Lin, G.-R.; Ang, S.-H.; Tan, E.-S.-W.; Lee, M.-A.; Ke, Z.; Madan, B.; Virshup, D.-M.; Ding, L.-J.; Manoharan, V.; Chew, Y.-S.; Low, C.-B.; Pendharkar, V.; Sangthongpitag, K.; Hill, J.; Keller, T.-H.; Poulsen, A. J. Med. Chem. 2017, 60, 6678.
(b) Alam, J.; Poulsen, A.; Ho, S.-Y.; Wang, W.-L.; Duraiswamy, A. WO 2015094118, 2008[Chem. Abstr. 2015, 163, 132777].
[4] Kayser, S.; Levis, M.-J.; Schlenk, R.-F. Expert Rev. Clin. Pharmacol. 2017, 10, 1177.
(b) Levis, M. Blood 2017, 129, 3403.
[5] Shimokawa, J.; Chiyoda, K.; Umihara, H.; Fukuyama, T. Chem. Pharm. Bull. 2016, 64, 1239.
(b) Cai, S.-L.; Song, R.; Dong, H.-Q.; Lin, G.-Q.; Sun, X.-W. Org. Lett. 2016, 18, 1996.
[6] (a) Daly, M.-J.; Jones, G.-W.; Nicholls, P.-J.; Smith, H.-J.; Rowlands, M.-G.; Bunnett, M.-A. J. Med. Chem. 1986, 29, 520.
(b) Sharma, D.-K.; Rajput, V.-S.; Singh, S.; Sharma, R.; Khan, I. A.; Mukherjee, D. ChemistrySelect 2016, 1, 1954.
[7] (a) Driller, K.-M.; Klein, H.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 6041.
(b) Mathur, P.; Joshi, R.-K.; Rai, D.-K.; Jha, B.; Mobin, S.-M. Dalton. Trans. 2012, 41, 5045.
[8] Henon, H.; Messaoudi, S.; Hugon, B.; Anizon, F.; Pfeiffer, B.; Prudhomme, M. Tetrahedron 2005, 61, 5599.
[9] An, Y.-L.; Shao, Z.-Y.; Cheng, J.; Zhao, S.-Y. Synthesis 2013, 45, 2719.
[10] Lanke, V.; Bettadapur, K.-R.; Prabhu, K.-R. Org. Lett. 2015, 17, 4662.
[11] Muniraj, N.; Prabhu, K.-R. ACS Omega 2017, 2, 4470.
[12] Zhang, Z.; Han, S.; Tang, M.; Ackermann, L.; Li, J. Org. Lett. 2017, 19, 3315.
[13] Liu, S.-L.; Li, Y.; Guo, J.-R.; Yang, G.-C.; Li, X.-H.; Gong, J.-F.; Song, M.-P. Org. Lett. 2017, 19, 4042.
[14] Sherikar, M.-S.; Kapanaiah, R.; Lanke, V.; Prabhu, K.-R. Chem. Commun. 2018, 54, 11200.
[15] Pan, C.; Wang, Y.; Wu, C.; Yu, J.-T. Org. Biomol. Chem. 2018, 16, 693.
[16] Koltunov, K.-Y.; Prakash, G.-K.-S.; Rasul, G.; Olah, G.-A. Eur. J. Org. Chem. 2006, 4861.
[17] Yang, Z.-H.; Chen, Z.-H.; An, Y.-L.; Zhao, S.-Y. RSC Adv. 2016, 6, 23438.
[18] Bettadapur, K.-R.; Lanke, V.; Prabhu, K.-R. Org. Lett. 2015, 17, 4658.
[19] Mandal, R.; Emayavaramban, B.; Sundararaju, B. Org. Lett. 2018, 20, 2835.
[20] Li, F.; Zhou, Y.; Yang, H.; Liu, D.; Sun, B.; Zhang, F.-L. Org. Lett. 2018, 1, 146.
[21] Yu, J. T.; Chen, R.; Jia, H.; Pan, C. J. Org. Chem. 2018, 83, 12086.
[22] Han, S.-H.; Kim, S.; De, U.; Mishra, N.-K.; Park, J.; Sharma, S.; Kwak, J.-H.; Han, S.; Kim, H.-S.; Kim, I.-S. J. Org. Chem. 2016, 81, 12416.
[23] He, Q.; Yamaguchi, T.; Chatani, N. Org. Lett. 2017, 19, 4544.
[24] Chen, X.; Ren, J.; Xie, H.; Sun, W.; Sun, M.; Wu, B. Org. Chem. Front. 2018, 5, 184.
[25] Bettadapur, K.-R.; Lanke, V.; Prabhu, K.-R. Chem. Commun. 2017, 53, 6251.
[26] Mandal, A.; Sahoo, H.; Dana, S.; Baidya, M. Org. Lett. 2017, 19, 4138.
[27] Muniraj, N.; Prabhu, K.-R. J. Org. Chem. 2017, 82, 6913.
[28] Qrareya, H.; Ravelli, D.; Fagnoni, M.; Albinia, A. Adv. Synth. Catal. 2013, 355, 2891.
[29] Capaldo, L.; Buzzetti, L.; Merli, D.; Fagnoni, M.; Ravelli, D. J. Org. Chem. 2016, 81, 7102.
[30] Han, S.; Park, J.; Kim, S.; Lee, S.-H.; Sharma, S.; Mishra, N.-K.; Jung, Y.-H.; Kim, I.-S. Org. Lett. 2016, 18, 4666.
[31] (a) Cunha, S.; Rodovalho, W.; Azevedo, N. R.; Mendonca, M.-D.-O.; Lariucci, C.; Vencato, I. J. Brazil. Chem. Soc. 2002, 13, 629.
(b) Gomez-Torres, E.; Alonso, D.-A.; Gomez-Bengoa, E.; Najera, C. Eur. J. Org. Chem. 2013, 2013, 1434.
(c) Noeth, J.; Frankowski, K.-J.; Neuenswander, B.; Aube, J.; Reiser, O. J. Comb. Chem. 2008, 10, 456.
[32] Zhao, G.-L.; Xu, Y.-M.; Sunden, H.; Eriksson, L.; Sayah, M.; Cordova, A. Chem. Commun. 2007, 7, 734.
[33] Yu, F.; Jin, Z.; Huang, H.; Ye. T.; Liang, X.; Ye, J.-X. Org. Bio-mol. Chem. 2010, 8, 4767.
[34] Yu, F.; Sun, X.; Jin, Z.; Wen, S.; Liang, X.; Ye, J.-X. Chem. Commun. 2010, 46, 4589.
[35] Muramulla, S.; Ma, J.-A.; Zhao, J.-C.-G. Adv. Synth. Catal. 2013, 355, 1260.
[36] Vizcaino-Milla, P.; Sansano, J.-M.; Najera, C.; Fiser, B.; Gomez-Bengoa, E. Synthesis 2015, 47, 2199.
[37] Nakashima, K.; Kawada, M.; Hirashima, S.; Kato, M.; Koseki, Y.; Miura, T. Synlett 2015, 26, 1248.
[38] Wang, J.-J.; Dong, X.-J.; Wei, W.-T.; Yan, M. Tetrahedron:Asymmetry 2011, 22, 690.
[39] Bai, J.-F.; Wang, L.-L.; Peng, L.; Guo, Y.-L.; Jia, L.-N.; Tian, F.; He, G.-Y.; Xu, X.-Y.; Wang, L.-X. J. Org. Chem. 2012, 77, 2947.
[40] Shirakawa, S.; Terao, S. J.; He, R.; Maruoka, K. Chem. Commun. 2011, 47, 10557.
[41] Gomez-Torres, E.; Alonso, D. A.; Gomez-Bengoa, E.; Najera, C. Org. Lett. 2011, 13, 6106.
[42] Li, X.; Hu, S.; Xi, Z.; Zhang, L.; Luo, S.; Cheng, J.-P. J. Org. Chem. 2010, 75, 8697.
[43] Liao, Y.-H.; Liu, X.-L.; Wu, Z.-J.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2010, 12, 2896.
[44] Feng, J.; Zhang, Y.; Lin, L.; Yao, Q.; Liu, X.; Feng, X. Chem. Commun. 2015, 51, 10554.
[45] Yarlagadda, S.; Reddy, C.-R.; Ramesh, B.; Kumar, G.-R.; Sridhar, B.; Reddy, B.-V.-S. Eur. J. Org. Chem. 2018, 1364.
[46] Li, J.; Qiu, S.; Ye, X.; Zhu, B.; Liu, H.; Jiang, Z. J. Org. Chem. 2016, 81, 11916.
[47] Iyer, P.-S.; O'Malley, M.-M.; Lucas, M.-C. Tetrahedron Lett. 2007, 48, 4413.
[48] Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 4611.
[49] Berhal, F.; Wu, Z.; Genet, J.; Ayad, T.; Ratovelomanana-Vidal, V. J. Org. Chem. 2011, 76, 6320.
[50] Korenaga, T.; Ko, A.; Shimamda, K. J. Org. Chem. 2013, 78, 9975.
[51] Gopula, B.; Yang, S.-H.; Kuo, T.-S.; Hsieh, J.-C.; Wu, P.-Y.; Henschke, J.-P.; Wu, H.-L. Chem. Eur. J. 2015, 21, 11050.
[52] Kumar, V.; Mitra, R.; Bhattarai, S.; Nair, V.-A. Synth. Commun. 2011, 41, 392.
[53] Raycroft, M.-A.-R.; Racine, K.-E.; Rowley, C.-N.; Keillor, J.-W. J. Org. Chem. 2018, 83, 11674.
[54] Han, F.; Yang, L.; Li, Z.; Xia, C.-G. Org. Biomol. Chem. 2012, 10, 346.
[55] An, Y.-L.; Deng, Y.-X.; Zhang, W.; Zhao, S.-Y. Synthesis 2015, 47, 1581.
[56] Velchinskaya, E.; Petsushak, B.; Rogal, A. Chem. Heterocycl. Compd. 2007, 43, 695.
[57] Uno, B.-E.; Deibler, K.-K.; Villa, C.; Raghuraman, A.; Scheidt, K.-A. Adv. Synth. Catal. 2018, 360, 1719.
[58] Uno, B.-E.; Dicken, R.-D.; Redfern, L.-R.; Stern, C.-M.; Krzywicki, G.-G.; Scheidt, K.-A. Chem. Sci. 2018, 9, 1634.
[59] Jiang, Z.; Zhang, Y.; Ye, W.; Tan, C.-H. Tetrahedron Lett. 2007, 48, 51.
[60] Balint, E.; Takacs, J.; Drahos, L.; Keglevich, G. Heteroat. Chem. 2012, 23, 235.
[61] Molleti, N.; Bjornberg, C.; Kong, J.-Y. Org. Biomol. Chem. 2016, 14, 10695.
[62] (a) Bourderioux, A.; Routier, S.; Beneteau, V.; Merour, J.-Y. Tetrahedron 2007, 63, 9465.
(b) Bouissane, L.; Sestelo, J.-P.; Sarandeses, L. A. Org. Lett. 2009, 11, 1285.
(c) Awuah, E.; Capretta, A. J. Org. Chem. 2011, 76, 3122.
(d) Souffrin, A.; Croix, C.; Viaud-Massuard, M.-C. Eur. J. Org. Chem. 2012, 13, 2499
[63] Roshchin, A.-I.; Polunin, E.-V. Mendeleev Commun. 2008, 18, 332.
[64] Lim, L.-H.; Zhou, J. Org. Chem. Front. 2015, 2, 775.
[65] Jafarpour, F.; Shamsianpour, M.; Issazadeh, S.; Dorrani, M.; Hazrati, H. Tetrahedron 2017, 73, 1668.
[66] Jafarpour, F.; Shamsianpour, M. RSC Adv. 2016, 6, 103567.
[67] Yang, Z.-H.; An, Y.-L.; Chen, Y.; Shao, Z.-Y.; Zhao, S.-Y. Adv. Synth. Catal. 2016, 358, 3869.
[68] Dana, S.; Mandal, A.; Sahoo, H.; Baidya, M. Org. Lett. 2017, 19, 1902.
[69] An, Y.-L.; Zhang, H.-H.; Yang, Z.-H.; Lin, L.; Zhao, S.-Y. Eur. J. Org. Chem. 2016, 2016, 5405.
[70] Kong, D.-H.; An, Y.-L.; Shao, Z.-Y.; Zhao, S.-Y. J. Chem. Res. 2018, 42, 476.
[71] (a) Yang, Z.-H.; Tan, H.-R.; An, Y.-L.; Zhao, Y.-W.; Lin, H.-P.; Zhao, S.-Y. Adv. Synth. Catal. 2018, 360, 173.
(b) Yang, Z.-H.; Zhu, J.-N.; Jin, Z.-H.; Zheng, J.; Zhao, S.-Y. Synthesis 2018, 50, 4627.
[72] Yang, Z.-H.; Tan, H.-R.; Zhu, J.-N.; Zheng, J.; Zhao, S.-Y. Adv. Synth. Catal. 2018, 360, 1523.
[73] (a) Maruoka, H.; Okabe, F.; Koutake, Y.; Fujioka, T.; Yamagata, K. Heterocycles 2009, 77, 617.
(b) Bai, J.-F.; Guo, Y.-L.; Peng, L.; Jia, L.-N.; Xu, X.-Y.; Wang, L.-X. Tetrahedron 2013, 69, 1229.
(b) Petrelli, A.; Samain, E.; Pradeau, S.; Halila, S.; Fort, S. ChemBioChem 2017, 18, 206.
[74] Baker, J.-R.; Tedaldi, L.-M.; Aliev, A.-E. Chem. Commun. 2012, 48, 4725.
[75] Lin, C.; Zhen, L.; Cheng, Y.; Du, H.-J.; Zhao, H.; Wen, X.; Kong, L.-Y.; Xu, Q.-L.; Sun, H. Org. Lett. 2015, 17, 2684.
[76] Ding, G.; Wu, X.; Jiang, L.; Zhang, Z.; Xie, X. Org. Lett. 2017, 19, 6048.
[77] Qiu, S.; Lee, R.; Zhu, B.; Coote, M.-L.; Zhao, X.; Jiang, Z. J. Org. Chem. 2016, 81, 8061.
[78] Nishikawa, Y.; Nakano, S.; Tahira, Y.; Terazawa, K.; Yamazaki, K.; Kitamura, C.; Hara, O. Org. Lett. 2016, 18, 2004.
[79] Kumar, G.-V.; Govindaraju, M.; Renuka, N.; Khatoon, B.-B.-A.; Mylarappa, B.-N.; Kumar, K.-A. Rasayan J. Chem. 2012, 5, 338.
[80] Liu, G.-N.; Luo, R.-H.; Zhou, Y.; Zhang, X.-J.; Li, J.; Yang, L.-M.; Zheng, Y.-T.; Liu, H. Molecules 2016, 21, 1198/1.
[81] Zhang, X.-N.; Chen, G.-Q.; Tang, X.-Y.; Wei, Y.; Shi, M. Angew. Chem., Int. Ed. 2014, 53, 10768.
[82] Sharma, S.; Han, S. H.; Oh, Y.; Mishra, N.-K.; Lee, S.-H.; Oh, J.-S.; Kim, I.-S. Org. Lett. 2016, 18, 2568.
[83] Morita, T.; Akita, M.; Satoh, T.; Kakiuchi, F.; Miura, M. Org. Lett. 2016, 18, 4598.
[84] Yu, W.; Zhang, W.; Liu, Y.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2017, 4, 77.
[85] Zhu, C.; Falck, J.-R. Chem. Commun. 2012, 48, 1674.
[86] Miura, W.; Hirano, K.; Miura, M. Org. Lett. 2015, 17, 4034.

文章导航

/