1,4-二氮杂双环[2.2.2]辛烷催化双环邻-氨基腈衍生物的合成
收稿日期: 2019-01-17
修回日期: 2019-04-20
网络出版日期: 2019-04-26
基金资助
国家自然科学基金(Nos.81573340,21402103,21772107)、山东省自主创新及成果转化专项(No.2015ZDXX0302A02)及青岛农业大学高层次人才基金(No.631303)资助项目.
Synthesis of Bicyclic ortho-Aminocarbonitrile Derivatives Catalyzed by 1,4-Diazabicyclo[2.2.2]octane
Received date: 2019-01-17
Revised date: 2019-04-20
Online published: 2019-04-26
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 81573340, 21402103, 21772107), the Special Projects for Independent Innovation and Achievement Transformation of Shandong Province (No. 2015ZDXX0302A02) and the Research Fund of Qingdao Agricultural University Highlevel Person (No. 631303).
报道了1,4-二氮杂双环[2.2.2]辛烷(DABCO)催化下的三组分一锅法合成双环邻-氨基腈衍生物,在该催化体系下,21种双环邻-氨基腈衍生物以68%~96%的收率制备得到.该方法于室温下即可顺利完成,反应时间短,目标化合物产率高.重要的是目标产物通过简单的过滤和乙醇洗涤即可获得
关键词: 1,4-二氮杂双环[2.2.2]辛烷(DABCO); 多组分反应; 邻-氨基腈衍生物; 环境友好; 乙醇
颜世强 , 董道青 , 解春文 , 王文笙 , 王祖利 . 1,4-二氮杂双环[2.2.2]辛烷催化双环邻-氨基腈衍生物的合成[J]. 有机化学, 2019 , 39(9) : 2560 -2566 . DOI: 10.6023/cjoc201901023
One-pot three-component reactions catalyzed by 1,4-diazabicyclo[2.2.2]octane (DABCO) for the synthesis of bicyclic ortho-aminocarbonitrile derivatives (21 examples, 68%~96%) have been developed. The reactions proceeded smoothly at room temperature and generated the corresponding products in short reaction time with high to excellent yields. Importantly, the desired products could be easily collected through simple filtration and washing with ethanol.
[1] (a) Tang, M.; Wu Y.; Liu Y.; Cai M.; Xia F.; Liu S.; Hu W.; Wu, Y. Acta Chim. Sinica 2016, 74, 54(in Chinese). (唐敏, 吴永, 刘源, 蔡茂强, 夏飞, 刘顺英, 胡文浩, 化学学报, 2016, 74, 54.)
(b) Yu, S.; Fu, X.; Liu, G.; Qiu, H.; Hu, W. Acta Chim. Sinica 2018, 76, 895(in Chinese). (余思凡, 傅祥, 刘耿鑫, 邱晃, 胡文浩, 化学学报, 2018, 76, 895.)
(c) Lu, L.-H.; Zhou, S.-J.; Sun, M.; Chen, J.-L.; Xia, W.; Yu, X.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 1574.
(d) Wu, C.; Xiao, H.-J.; Wang, S.-W.; Tang, M.-S.; Tang, Z.-L.; Xia, W.; Li, W.-F.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 2169.
(e) Wu, C.; Hong, L.; Shu, H.; Zhou, Q.-H.; Wang, Y.; Su, N.; Jiang, S.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 8798.
(f) Wang, Z.; Yang, L.; Liu, H.-L.; Bao, W.-H.; Tan, Y.-Z.; Wang, M.; Tang, Z.; He, W.-M. Chin. J. Org. Chem. 2018, 38, 2639(in Chinese). (王峥, 杨柳, 刘慧兰, 谭英芝, 包文虎, 汪明, 唐子龙, 何卫民, 有机化学, 2018, 38, 2639.)
(g) Liu, Q.; Wang, L.; Yue, H.; Li, J.-S.; Luo, Z.; Wei, W. Green Chem. 2019, 21, 1609.
(h) Wei, W.; Cui, H.; Yue, H.; Yang, D. Green Chem. 2018, 20, 3197.
(i) Wang, L.; Bao, P.; Liu, W.; Liu, S.; Hu, C.; Yue, H.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189(in Chinese). (王雷雷, 鲍鹏丽, 刘维伟, 刘思彤, 胡昌松, 岳会兰, 杨道山, 魏伟, 有机化学, 2018, 38, 3189.)
(j) Yue, H.; Bo, P.; Wang, B. L.; Lv, X.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2019, 39, 463(in Chinese). (岳会兰, 鲍鹏丽, 王雷雷, 吕晓霞, 杨道山, 王桦, 魏伟, 有机化学, 2019, 39, 463.)
(k) Xie, L.-Y.; Peng, S.; Fan, T.-G.; Liu, Y.-F.; Sun, M.; Jiang, L.-L.; Wang, X.-X.; Cao, Z.; He, W.-M. Sci. China Chem. 2019, 62, 460.
(l) Li, G.; Gan, Z.; Kong, K.; Dou, X.; Yang, D. Adv. Synth. Catal. 2019, 361, 1808.
(m) Zong, Y.; Lang, Y.; Yang, M.; Li, X.; Fan, X.; Wu, J. Org. Lett. 2019, 21, 1935.
[2] (a) Tan, J.; Guo, Y.; Zeng, F.; Chen, G.; Xie, L.; He, W. Chin. J. Org. Chem. 2018, 38, 1740(in Chinese). (谭家希, 郭也, 曾飞, 陈观荣, 谢龙勇, 何卫民, 有机化学, 2018, 38, 1740.)
(b) Sha, H.-K.; Liu, F.; Lu, J.; Liu, Z.-Q.; Hao, W.-J.; Tang, J.-L.; Tu, S.-J.; Jiang, B. Green Chem. 2018, 20, 3476.
(c) Fan, W.; Chen, K.-Y.; Chen, Q.-P.; Li, G.; Jiang, B. Org. Biomol. Chem. 2017, 15, 6493.
(d) Xie, L.-Y.; Peng, S.; Tan, J.-X.; Sun, R.-X.; Yu, X.; Dai, N.-N.; Tang, Z.-L.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 16976.
(e) Xie, L.-Y.; Peng, S.; Liu, F.; Liu, Y.-F.; Sun, M.; Tang, Z.-L.; Jiang, S.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 7193.
(g) Liu, K.-J.; Fu, Y.-L.; Xie, L.-Y.; Wu, C.; He, W.-B.; Peng, S.; Wang, Z.; Bao, W.-H.; Cao, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 4916.
[3] (a) Enders, D.; Huettl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861.
(b) Padwa, A. Chem. Soc. Rev. 2009, 38, 3072.
(c) Takumi, M.; Noriaki, O.; Takatoshi, I.; Toshiyuki, M. Tetrahedron Lett. 2000, 41, 1051.
(d) Takumi, M.; Yoshio, I. Tetrahedron 2002, 58, 3155.
(e) Saddiqa, A.; Bukhari, I. H.; Tahir, M. N.; Ahmad, M.; Shafiq, M.; Arshad, M. N. Asian J. Chem. 2015, 27, 969.
[4] (a) Wan, Y.; Zhang, X.; Zhao, L.; Wang, C.; Chen, L.; Liu, G.; Huang, S.; Yue, S.; Zhang, W.; Wu, H. J. Heterocycl. Chem. 2015, 52, 623.
(b) Lohar, T.; Kumbhar, A.; Barge, M.; Salunkhe, R. J. Mol. Liq. 2016, 224, 1102.
(c) Gaikwad, D. S.; Undale, K. A.; Patil, D. B.; Patravale, A. A.; Kamble, A. A. J. Iran. Chem. Soc. 2018, 15, 1175.
(d) Wang, X. S.; Wu, J. R.; Zhou, J.; Zhang, M. M. J. Heterocycl. Chem. 2011, 48, 1056.
(e) Zhang, M. M.; Wu, J. R.; Zhou, J.; Wang, X. S. Synth. Commun. 2012, 42, 599.
[5] (a) Mojtahedi, M. M.; Pourabdi, L.; Abaee, M. S.; Jami, H.; Dini, M.; Halvagar, M. R. Tetrahedron 2016, 72, 1699.
(b) Elinson, M. N.; Ilovaisky, A. I.; Merkulova, V. M.; Barba, F.; Batanero, B. Tetrahedron 2013, 69, 7125.
(c) Khan, M. N.; Pal, S.; Karamthulla, S.; Choudhury, L. H. RSC Adv. 2014, 4, 3732.
(d) Wang, J.; Li, Q.; Qi, C.; Liu, Y.; Ge, Z.; Li, R. Org. Biomol. Chem. 2010, 8, 4240.
(e) Babu, T. H.; Joseph, A. A.; Muralidharan, D.; Perumal, P. T. Tetrahedron Lett. 2010, 51, 994.
(f) Elinson, M. N.; Vereshchagin, A. N.; Nasybullin, R. F.; Bobrovsky, S. I.; Ilovaisky, A. I.; Merkulova, V. M.; Bushmarinov, I. S.; Egorov, M. P. RSC Adv. 2015, 5, 50421.
[6] Das, P.; Butcher, R. J.; Mukhopadhyay, C. Green Chem. 2012, 14, 1376.
[7] Zhang, L.; Wan, Y.; Zhang, X.; Cui, H.; Zou, H.; Zhou, Q. Wu, H. Tetrahedron Lett. 2015, 56, 4934.
[8] Maleki, B.; Rooky, R.; Rezaei-Seresht, E.; Tayebee R. Org. Prep. Proced. Int. 2017, 49, 557.
[9] (a) Wang, X.; Zhang, M.; Li, Q.; Yao, C.; Tu, S. Tetrahedron 2007, 63, 5265.
(b) Wang, X. S.; Zhou, J.; Yang, K.; Zhang, M. M. Synth. Commun. 2010, 40, 1065.
[10] Molla, A.; Hussain, S. RSC Adv. 2014, 4, 29750.
[11] Azizi, N.; Ahooie, T. S.; Hashemi, M. M.; Azizi, N.; Ahooie, T. S.; Hashemi, M. M. J. Mol. Liq. 2017, 246, 221.
[12] Huang, X. F.; Zhang, Y. F.; Qi, Z. H.; Li, N. K.; Geng, Z. C.; Li, K.; Wang, X. W. Org. Biomol. Chem. 2014, 12, 4372.
[13] For selected reactions catalyzed by DABCO see:(a) Maher, D.; Connon, S. Tetrahedron Lett. 2004, 45, 1301.
(b) Luca, C.; Francesco, D. S.; Fabrizio, M. Eur. J. Org. Chem. 2006, 4852.
(c) Baidya, M.; Kobayashi, S.; Brotzel, F.; Schmidhammer, U.; Riedle, E.; Mayr, H. Angew. Chem., Int. Ed. 2007, 46, 6176.
(d) Chandrasekhar, S.; Narsihmulu, C.; Saritha, B.; Sultana, S. Tetrahedron Lett. 2004, 45, 5865.
(e) Murthy, S. N.; Madhav, B.; Nageswar, Y. V. D. Tetrahedron Lett. 2010, 51, 5252.
(f) Zhang, W.; Xu, H. D.; Xu, H.; Tang, W. P. J. Am. Chem. Soc. 2009, 131, 3832.
(g) Meshram, H.M.; Kumar, G. S.; Ramesh, P.; Reddy, B. C. Tetrahedron Lett. 2010, 51, 2580.
(h) Fan, M.; Li, G.; Liang, Y. Tetrahedron 2006, 62, 6782.
(i) Wu, J.; Sun, X. Y.; Li, Y. Z. Eur. J. Org. Chem. 2005, 4271.
[14] Li, M.; Zhou, Z.; Wen, L.; Qiu, Z. J. Org. Chem. 2011, 76, 3054.
[15] Singh, M. S.; Nandi, G. C.; Samai, S. Green Chem. 2012, 14, 447.
[16] Liu, Y. F.; Du, Y. L.; Yu, A. M.; Mu, H. F.; Meng, X. T. Org. Biomol. Chem. 2016, 14, 1226.
[17] Chinchkar, S. M.; Patil, J. D.; Korade, S. N.; Gokavi, G. S.; Shejawal, R. V.; Pore, D. M. Lett. Org. Chem. 2017, 14, 403.
[18] (a) Dong, D.-Q.; Chen, W.-J.; Chen, D.-M.; Li, L.-X.; Li, G.-H.; Wang, Z.-L.; Deng, Q.; Long, S. Chin. J. Org. Chem. 2019, 39, DOI:10.6023/cjoc201904070(in Chinese). (董道青, 陈文静, 陈德茂, 李丽霞, 李光辉, 王祖利, 邓企, 龙姝, 有机化学, 2019, 39, DOI:10.6023/cjoc201904070.)
(b) Dong, D.-Q.; Li, L.-X.; Li, G.-H.; Deng, Q.; Wang, Z.-L.; Long, S. Chin. J. Catal. 2019, 1494.
(c) Xu, X.-M.; Chen, D.-M.; Wang, Z.-L. Chin. J. Org. Chem. 2019, 39, DOI:10.6023/cjoc201904068(in Chinese). (徐鑫明, 陈德茂, 王祖利, 有机化学, 2019, 39, DOI:10.6023/cjoc201904068.)
(d) Hao, S. H.; Zhang, X. Y.; Dong, D. Q.; Wang, Z. L. Chin. Chem. Lett. 2015, 26, 599.
(e) Zhang, H.; Dong, D.-Q.; Hao, S.-H.; Wang, Z. L. RSC Adv. 2016, 6, 8465.
(f) Yan, S. Q.; Ding, N.; Zhang, W.; Wang, P.; Li, Y. X.; Li, M. Carbohydr. Res. 2012, 354, 6.
(g) Chun, Y. X.; Yan, S. Q.; Li, X. P.; Ding, N.; Zhang, W.; Wang, P.; Li, M.; Li, Y. X. Tetrahedron Lett. 2011, 52, 6196.
(h) Yan, S. Q.; Ding, N.; Zhang, W.; Wang, P.; Li, Y. X.; Li, M. J. Carbohydr. Chem. 2012, 31, 571.
(i) Hao, S.; Li, L.; Dong, D. Q.; Wang, Z. L.; Yu, X. Tetrahedron Lett. 2018, 59, 4073.
(j) Li, G. H.; Dong, D. Q.; Yang, Y.; Yu, X. Y.; Wang, Z. L. Adv. Synth. Catal. 2019, 361, 832.
(k) Li, G.-H.; Dong, D.-Q.; Yu, X.-Y.; Wang, Z.-L. New J. Chem. 2019, 43, 1667.
(l) Dong, D.-Q.; Chen, W.-J.; Yang, Y.; Gao, X.; Wang, Z.-L. ChemistrySelect 2019, 4, 2480.
/
〈 |
|
〉 |