研究论文

氯化镍催化的过硫酸钠对芳烃苄位的氧化反应

  • 刘立策 ,
  • 吴杰庆 ,
  • 马鸿飞 ,
  • 张晗 ,
  • 顾洁凡 ,
  • 李玉峰
展开
  • a 南京工业大学化学与分子工程学院 南京 210036;
    b 南京联科化学有限公司 南京 210009

收稿日期: 2019-03-02

  修回日期: 2019-04-18

  网络出版日期: 2019-04-26

Nickel Chloride-Catalyzed Oxidation of Aromatic Hydrocarbon with Sodium Persulfate at the Benzylic Site

  • Liu Lice ,
  • Wu Jieqing ,
  • Ma Hongfei ,
  • Zhang Han ,
  • Gu Jiefan ,
  • Li Yufeng
Expand
  • a College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210036;
    b Nanjing UNOCI Chemical Co., Nanjing 210009

Received date: 2019-03-02

  Revised date: 2019-04-18

  Online published: 2019-04-26

摘要

建立了一种实用的氧化芳烃侧链制备芳香族醛、酮的方法.以过硫酸钠为氧化剂,在氯化镍催化下,甲苯类底物的苄位发生氧化反应,得到芳香醛,收率为22%~79%.乙苯类底物更容易发生反应得到芳香酮,收率为64%~84%.苄基醇类底物的反应得到相应的羰基化合物,并显示出更快的反应速度和更高的选择性和收率.该反应条件温和,无需贵金属参与和额外的促进剂,选择性良好.

本文引用格式

刘立策 , 吴杰庆 , 马鸿飞 , 张晗 , 顾洁凡 , 李玉峰 . 氯化镍催化的过硫酸钠对芳烃苄位的氧化反应[J]. 有机化学, 2019 , 39(6) : 1688 -1694 . DOI: 10.6023/cjoc201903003

Abstract

A practical method for the oxidation of aromatic side chains was established for the preparation of aromatic aldehydes and ketones. Using NiCl2 as the catalyst, substituted toluenes were oxidized with Na2S2O8 at the benzylic site for the synthesis of the corresponding aldehydes in the yield of 22%~79%. Ethylbenzene analogs were oxidized more easily to obtain the corresponding ketones with 64%~84% yields. The oxidation of benzyl alcohol analogs was completed to acquire the corresponding carbonyl compounds in shorter time with better selectivity and yields. The method has the advantages such as the mild reaction conditions, no requirement for precious metals or additional promoter, and good selectivity.

参考文献

[1] (a) Sheldon, R. A.; Kochi, J. K. Metal Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981.
(b) Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis (Oxidation), Pergamon, New York, 1991, Vol. 7.
(c) Zhang, J. T.; Wang, Z. T.; Wang, L.; Wan, C. F.; Zheng, X. Q.; Wang, Z. Y. Green. Chem. 2009, 11, 1973.
[2] Rao, K. T. V.; Rao, P. S. N.; Nagaraju, P.; Prasad, P. S. S.; Lingaiah, N. J. Mol. 2009, 303, 84.
[3] (a) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
(b) Yiu, S. M.; Wu, Z. B.; Mak, C. K.; Lau, T. C. J. Am. Chem. Soc. 2004, 126, 14921.
(c) Hudlicky, M. Oxidations in Organic Chemistry, American Chemical Society, Washington, DC, 1990.
[4] (a) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329.
(b) Shi, Z. Z.; Zhang, C.; Tang, C. H.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
(c) Collins, T. J.; Ryabov, A. D. Chem. Rev. 2017, 117, 9140.
(d) Yang, Z. F.; Zhang, H.; Liu, X. R.; Wang, B.; Lutz, A. Chin. J. Org. Chem. 2019, 39, 59 (in Chinese).(杨帆致, 张晗, 刘旭日, 王博, Lutz Ackermann, 有机化学, 2019, 39, 59.)
[5] (a) Ohkubo, K.; Fukuzumi, S. Org. Lett. 2000, 2, 3647.
(b) Kei, O.; Kyou, S.; Kohei, M.; Shunichi, F. J. Am. Chem. Soc. 2003, 125, 12850.
(c) Pahari, S. K.; Pal, P.; Srivastava, D. N.; Ghosh, S. C.; Panda, A. B. Chem. Commun. 2015, 51, 10322.
(d) Li, S. L.; Zhu, B.; Lee, R.; Qiao, B. K.; Jiang, Z. Y. Org. Chem. Front. 2018, 5, 380.
[6] (a) Jr, L. Q.; Tolman, W. B. Nature 2008, 455. 333.
(b) Rickert, A.; Krombach, V.; Hamers, O.; Zorn, H.; Maison, W. G. Green Chem. 2012, 14, 639.
(c) Roiban, G. D.; Agudo, R.; Reetz, M. T. Angew. Chem., Int. Ed. 2014, 53, 8659.
(d) Nastri, F.; Chino, M.; Maglio, O.; Damodaran, A. B.; Lu, Y.; Lombardi, A. Chem. Soc. Rev. 2016, 45, 5020.
[7] (a) Nam, W. Acc. Chem. Res. 2007, 40, 522.
(b) Ding, Z. D.; Zhu, W.; Li, T.; Shen, R.; Li, Y. X.; Li, Z. J.; Ren, X. H.; Gu, Z. G. Dalton Trans. 2017, 46, 11372.
[8] (a) Qi, J. Y.; Ma, H. X.; Li, X. J.; Zhou, Z. Y.; Choi, M. C. K.; Chan, A. S. C.; Yang, Q. Y. Chem. Commun. 2003, 1294.
(b) Wang, B.; Mao, W.; Ma, H. Z. Ind. Eng. Chem. Res. 2009, 48, 440.
(c) Potapenko, E. V.; Andreev, P. Y. Russ. J. Appl. Chem. 2011, 84, 984.
[9] (a) Lane, B.-S.; Burgess, K. Chem. Rev. 2003, 103, 2457.
(b) Wang, Y.; Li, H. R.; Yao, J.; Wang, X. C.; Antoniettia, M. Chem. Sci. 2011, 2, 446.
(c) Shen, D. Y.; Miao, C. X.; Wang, S. F.; Xia, C. G.; Sun, W. Org. Lett. 2014, 16, 1108.
(d) Verma, S.; Baig, R. B. N.; Nadagouda, M. N.; Varma, R. S. ACS Sustainable Chem. Eng. 2016, 4, 2333.
(e) Saisaha, P.; Dong, J. J.; Meinds, T. G.; Johannes, W.; Hage, R.; Mecozzi, F.; Kasper, J. B.; Browne, W. R. ACS Catal. 2016, 6, 3486.
(f) Konstantin, P.; Bryliakov Chem. Rev. 2017, 117, 11406.
[10] (a) Halina, W.; Soroko, G.; Jacek, M. Synth. Commun. 2008, 38, 2000.
(b) Hossain, M. M.; Shyu, S. G. Tetrahedron 2016, 72, 4252.
(c) Xu, W. X.; Zhang, Z. Q.; Zhao, X.; Li, J. Coord. Chem. 2017, 70, 746.
(d) Chen, Y.; Jie, S. S.; Yang, C. Q.; Liu, Z. G. Appl. Surf. Sci. 2017, 419, 98.
(e) Sun, Q.; Song, X. Y.; Gao, L.; Chen, W.; Li, Y.; Mao, L.; Yang, J. H. Chem. Pap. 2018, 72, 2203.
[11] (a) Badri, R.; Adlu, M.; Mohammadi, M. K. Arabian J. Chem. 2015, 8, 62.
(b) Hu, Y. X.; Zhou, L. H.; Lu, W. J. Synthesis 2017, 49, 4007.
(c) Han, W.; Zhao, H. Y. CN 107216242, 2017[Chem. Abstr. 2017, 167, 528688].
[12] Jakob, H.; Leininger, S.; Lehmann, T.; Jacobi, S.; Gutewort, S. Ullmann's Encyclopedia of Industrial Chemistry, Weinheim, W. C. Germany, 2012, Vol. 26, p. 308.
[13] Li, Y. F.; Zhang, H.; Dai, C. W.; Liu, L. C.; Ma, H. F.; Pu, H. Z. Tetrahedron 2018, 74, 3712.
[14] Lin, X.; Nie, Z. Z.; Zhang, L. Y.; Mei, S. C.; Chen, Y. Green Chem. 2017, 19, 2164.
[15] Zhang, B. S.; Zhu, R. L.; Liu, Z. G.; Xin, L.; Zhang, J. S. Org. Chem. Front. 2016, 3, 1326.
[16] Guo, T. F.; Gao, Y.; Li, Z. J.; Liu, J. J.; Guo, K. Synlett 2019, 30, 329.
[17] Gholizadeh, M.; Baltork, I. M. Bull. Korean Chem. Soc. 2005, 26, 11.
[18] Castle, R. N.; Riebsomer, J. L. ACS Sustainable Chem. Eng. 1955, 21, 142.
[19] Richard, R. B.; Louise, J. B. J. Anal. Appl. Pyrolysis 2004, 71, 223.
[20] Cui, L. Q.; Liu, K.; Zhang, C. Org. Biomol. Chem. 2011, 9, 2258.
[21] Kaneyuki, H. Bull. Chem. Soc. Jpn. 1961, 35, 519.

文章导航

/