氯化镍催化的过硫酸钠对芳烃苄位的氧化反应
收稿日期: 2019-03-02
修回日期: 2019-04-18
网络出版日期: 2019-04-26
Nickel Chloride-Catalyzed Oxidation of Aromatic Hydrocarbon with Sodium Persulfate at the Benzylic Site
Received date: 2019-03-02
Revised date: 2019-04-18
Online published: 2019-04-26
刘立策 , 吴杰庆 , 马鸿飞 , 张晗 , 顾洁凡 , 李玉峰 . 氯化镍催化的过硫酸钠对芳烃苄位的氧化反应[J]. 有机化学, 2019 , 39(6) : 1688 -1694 . DOI: 10.6023/cjoc201903003
A practical method for the oxidation of aromatic side chains was established for the preparation of aromatic aldehydes and ketones. Using NiCl2 as the catalyst, substituted toluenes were oxidized with Na2S2O8 at the benzylic site for the synthesis of the corresponding aldehydes in the yield of 22%~79%. Ethylbenzene analogs were oxidized more easily to obtain the corresponding ketones with 64%~84% yields. The oxidation of benzyl alcohol analogs was completed to acquire the corresponding carbonyl compounds in shorter time with better selectivity and yields. The method has the advantages such as the mild reaction conditions, no requirement for precious metals or additional promoter, and good selectivity.
Key words: oxidation; aromatic hydrocarbon; benzyl alcohol; nickel chloride; sodium persulfate
[1] (a) Sheldon, R. A.; Kochi, J. K. Metal Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981.
(b) Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis (Oxidation), Pergamon, New York, 1991, Vol. 7.
(c) Zhang, J. T.; Wang, Z. T.; Wang, L.; Wan, C. F.; Zheng, X. Q.; Wang, Z. Y. Green. Chem. 2009, 11, 1973.
[2] Rao, K. T. V.; Rao, P. S. N.; Nagaraju, P.; Prasad, P. S. S.; Lingaiah, N. J. Mol. 2009, 303, 84.
[3] (a) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
(b) Yiu, S. M.; Wu, Z. B.; Mak, C. K.; Lau, T. C. J. Am. Chem. Soc. 2004, 126, 14921.
(c) Hudlicky, M. Oxidations in Organic Chemistry, American Chemical Society, Washington, DC, 1990.
[4] (a) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329.
(b) Shi, Z. Z.; Zhang, C.; Tang, C. H.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
(c) Collins, T. J.; Ryabov, A. D. Chem. Rev. 2017, 117, 9140.
(d) Yang, Z. F.; Zhang, H.; Liu, X. R.; Wang, B.; Lutz, A. Chin. J. Org. Chem. 2019, 39, 59 (in Chinese).(杨帆致, 张晗, 刘旭日, 王博, Lutz Ackermann, 有机化学, 2019, 39, 59.)
[5] (a) Ohkubo, K.; Fukuzumi, S. Org. Lett. 2000, 2, 3647.
(b) Kei, O.; Kyou, S.; Kohei, M.; Shunichi, F. J. Am. Chem. Soc. 2003, 125, 12850.
(c) Pahari, S. K.; Pal, P.; Srivastava, D. N.; Ghosh, S. C.; Panda, A. B. Chem. Commun. 2015, 51, 10322.
(d) Li, S. L.; Zhu, B.; Lee, R.; Qiao, B. K.; Jiang, Z. Y. Org. Chem. Front. 2018, 5, 380.
[6] (a) Jr, L. Q.; Tolman, W. B. Nature 2008, 455. 333.
(b) Rickert, A.; Krombach, V.; Hamers, O.; Zorn, H.; Maison, W. G. Green Chem. 2012, 14, 639.
(c) Roiban, G. D.; Agudo, R.; Reetz, M. T. Angew. Chem., Int. Ed. 2014, 53, 8659.
(d) Nastri, F.; Chino, M.; Maglio, O.; Damodaran, A. B.; Lu, Y.; Lombardi, A. Chem. Soc. Rev. 2016, 45, 5020.
[7] (a) Nam, W. Acc. Chem. Res. 2007, 40, 522.
(b) Ding, Z. D.; Zhu, W.; Li, T.; Shen, R.; Li, Y. X.; Li, Z. J.; Ren, X. H.; Gu, Z. G. Dalton Trans. 2017, 46, 11372.
[8] (a) Qi, J. Y.; Ma, H. X.; Li, X. J.; Zhou, Z. Y.; Choi, M. C. K.; Chan, A. S. C.; Yang, Q. Y. Chem. Commun. 2003, 1294.
(b) Wang, B.; Mao, W.; Ma, H. Z. Ind. Eng. Chem. Res. 2009, 48, 440.
(c) Potapenko, E. V.; Andreev, P. Y. Russ. J. Appl. Chem. 2011, 84, 984.
[9] (a) Lane, B.-S.; Burgess, K. Chem. Rev. 2003, 103, 2457.
(b) Wang, Y.; Li, H. R.; Yao, J.; Wang, X. C.; Antoniettia, M. Chem. Sci. 2011, 2, 446.
(c) Shen, D. Y.; Miao, C. X.; Wang, S. F.; Xia, C. G.; Sun, W. Org. Lett. 2014, 16, 1108.
(d) Verma, S.; Baig, R. B. N.; Nadagouda, M. N.; Varma, R. S. ACS Sustainable Chem. Eng. 2016, 4, 2333.
(e) Saisaha, P.; Dong, J. J.; Meinds, T. G.; Johannes, W.; Hage, R.; Mecozzi, F.; Kasper, J. B.; Browne, W. R. ACS Catal. 2016, 6, 3486.
(f) Konstantin, P.; Bryliakov Chem. Rev. 2017, 117, 11406.
[10] (a) Halina, W.; Soroko, G.; Jacek, M. Synth. Commun. 2008, 38, 2000.
(b) Hossain, M. M.; Shyu, S. G. Tetrahedron 2016, 72, 4252.
(c) Xu, W. X.; Zhang, Z. Q.; Zhao, X.; Li, J. Coord. Chem. 2017, 70, 746.
(d) Chen, Y.; Jie, S. S.; Yang, C. Q.; Liu, Z. G. Appl. Surf. Sci. 2017, 419, 98.
(e) Sun, Q.; Song, X. Y.; Gao, L.; Chen, W.; Li, Y.; Mao, L.; Yang, J. H. Chem. Pap. 2018, 72, 2203.
[11] (a) Badri, R.; Adlu, M.; Mohammadi, M. K. Arabian J. Chem. 2015, 8, 62.
(b) Hu, Y. X.; Zhou, L. H.; Lu, W. J. Synthesis 2017, 49, 4007.
(c) Han, W.; Zhao, H. Y. CN 107216242, 2017[Chem. Abstr. 2017, 167, 528688].
[12] Jakob, H.; Leininger, S.; Lehmann, T.; Jacobi, S.; Gutewort, S. Ullmann's Encyclopedia of Industrial Chemistry, Weinheim, W. C. Germany, 2012, Vol. 26, p. 308.
[13] Li, Y. F.; Zhang, H.; Dai, C. W.; Liu, L. C.; Ma, H. F.; Pu, H. Z. Tetrahedron 2018, 74, 3712.
[14] Lin, X.; Nie, Z. Z.; Zhang, L. Y.; Mei, S. C.; Chen, Y. Green Chem. 2017, 19, 2164.
[15] Zhang, B. S.; Zhu, R. L.; Liu, Z. G.; Xin, L.; Zhang, J. S. Org. Chem. Front. 2016, 3, 1326.
[16] Guo, T. F.; Gao, Y.; Li, Z. J.; Liu, J. J.; Guo, K. Synlett 2019, 30, 329.
[17] Gholizadeh, M.; Baltork, I. M. Bull. Korean Chem. Soc. 2005, 26, 11.
[18] Castle, R. N.; Riebsomer, J. L. ACS Sustainable Chem. Eng. 1955, 21, 142.
[19] Richard, R. B.; Louise, J. B. J. Anal. Appl. Pyrolysis 2004, 71, 223.
[20] Cui, L. Q.; Liu, K.; Zhang, C. Org. Biomol. Chem. 2011, 9, 2258.
[21] Kaneyuki, H. Bull. Chem. Soc. Jpn. 1961, 35, 519.
/
〈 |
|
〉 |