综述与进展

手性环戊二烯过渡金属配合物在不对称催化反应中的应用

  • 单贺 ,
  • 伶俐 ,
  • 胡剑锋 ,
  • 张浩
展开
  • a 内蒙古大学化学化工学院 呼和浩特 010021;
    b 内蒙古自治区精细有机合成重点实验室 呼和浩特 010021

收稿日期: 2019-03-06

  修回日期: 2019-04-26

  网络出版日期: 2019-05-06

基金资助

国家自然科学基金(No.21861028)和内蒙古自治区自然科学基金(No.2017MS0206)资助项目.

Application in the Asymmetric Catalytic Reactions of Chiral Cyclopentadienyl-Transition-Metal Complexes

  • Shan He ,
  • Ling Li ,
  • Hu Jianfeng ,
  • Zhang Hao
Expand
  • a College of Chemical & Chemical Engineering, Inner Mongolia University, Hohhot 010021;
    b Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021

Received date: 2019-03-06

  Revised date: 2019-04-26

  Online published: 2019-05-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21861028) and the Natural Science Foundation of Inner Mongolia (No. 2017MS0206).

摘要

手性环戊二烯配体作为不对称催化反应中的立体控制元素受到金属有机工作者的关注,尤其是设计合成更多通用的手性环戊二烯基配体成为了不对称催化领域的研究中心之一.综述了近年来发展出的各种手性环戊二烯配体与不同过渡金属的配合物,以及这些配合物在催化不对称反应方面的进展.

本文引用格式

单贺 , 伶俐 , 胡剑锋 , 张浩 . 手性环戊二烯过渡金属配合物在不对称催化反应中的应用[J]. 有机化学, 2019 , 39(6) : 1548 -1556 . DOI: 10.6023/cjoc201903012

Abstract

The chiral Cp ligands as stereocontrolling element of asymmetric catalytic reactions have attracted increasing attention. Particularly, designing and synthesizing more versatile chiral Cp ligands became one of the most interested research focuses in asymmetric catalysis. The complexes of various chiral Cp ligands with different transition metals that advanced in recent years, and the applications of these complexes in catalytic asymmetric reactions are reviewed in this paper.

参考文献

[1] Togni, A.; Halterman, R. L. In Metallocenes:Synthesis, Reactivity, applications, Vol. 2, Eds.:Jutzi, P.; Edelmann, F. T., Wiley-VCH, New York, 1998, pp. 1~102.
[2] Halterman, R. L.; Vollhardt, K. P. C. Organometallics 1988, 7, 883.
[3] Halterman, R. L. Chem. Rev. 1992, 92, 965.
[4] Newton, C. G.; Kossler, D.; Cramer, N. J. Am. Chem. Soc. 2016, 138, 3935.
[5] Ye, B.-H.; Cramer, N. Science 2012, 338, 504.
[6] (a) Jang, H.-J.; Romiti, F.; Torker, S.; Hoveyda, A. H. Nat. Chem. 2017, 9, 1269.
(b) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2017, 50, 988.
(c) Vanable, E. P.; Kennemur, J. L.; Joyce, L. A.; Ruck, R. T.; Schultz, D. M.; Hull, K. L. J. Am. Chem. Soc. 2019, 141, 739.
(d) Ambler, B. R.; Turnbull, B. W. H.; Suravarapu, S. R.; Uteuliyev, M. M.; Huynh, N. O.; Krische, M. J. J. Am. Chem. Soc. 2018, 140, 9091.
[7] Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. In Comprehensive Asymmetric Catalysis, Vol. I~Ⅲ, Eds.:Brown, J. M.; Buchwald, S. L., Springer-Verlag, New York, 1999, pp. 1~10.
[8] Wu, P.-L.; Jia, M.-Q.; Lin, W.-L.; Ma, S.-M. Org. Lett. 2018, 20, 554.
[9] (a) Zhu, G.-Q.; Wang, P. Chin. J. Synth. Chem. 2018, 26, 66 (in Chinese).
(朱广乾, 王鹏, 合成化学, 2018, 26, 66.)
(b) Inoue, F.; Myuto, K.; Yadav, M. R.; Nakao, Y. Angew. Chem., Int. Ed. 2017, 56, 13307.
(c) Lin, Z.-Q.; Wang, W.-Z.; Yan, S.-B.; Duan, W.-L. Angew. Chem., Int. Ed. 2015, 54, 6265.
(d) Wang, Z.-B.; Yin, H.-L.; Fu, G. C. Nature 2018, 563, 379.
(e) Zheng, S.-C.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2019, 58, 1494.
(f) Yao, K.; Yuan, Q.-J.; Qu, X.-X.; Liu, Y.-G.; Liu, D.-L.; Zhang, W.-B. Chem. Sci. 2019, 10, 1767.
[10] Nishiura, M.; Guo, F.; Hou, Z.-M. Acc. Chem. Res. 2015, 48, 2209.
[11] Li, S.-H.; Liu, D.-T.; Wang, Z.-C.; Cui, D.-M. ACS Catal. 2018, 8, 6086.
[12] Zhang, H.; Zhou, B.; Li, H.; Qu, D.-H.; Tian, H. J. Org. Chem. 2013, 78, 2091.
[13] Liu, X.-L.; Li, J.-Z.; Bi, F.-Q.; Zhang, W.-Q.; Gao, Z.-W.; Zhang, G.-F. Eur. J. Inorg. Chem. 2015, 9, 1496.
[14] Bauer, E. B. Chem. Soc. Rev. 2012, 41, 3153.
[15] Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.; Takahashi, S. J. Am. Chem. Soc. 2001, 123, 10405.
[16] Trost, B. M.; Rao, M.; Dieskau, A. P. J. Am. Chem. Soc. 2013, 135, 18697.
[17] Kagan, H. B.; Dang, T. P. J. Am. Chem. Soc. 1972, 94, 6429.
[18] Whitesell, J. K. Chem. Rev. 1989, 89, 1581.
[19] Ye, B.-H.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
[20] Zhang, A.-B.; RajanBabu, T. V. Org. Lett. 2004, 6, 1515.
[21] Li, W.-G.; Zhang, Z.-G.; Xiao, D.-M.; Zhang, X.-M. J. Org. Chem. 2000, 65, 3489.
[22] Ye, B.-H.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 636.
[23] Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 5139.
[24] Ahmed, I.; Clark, D. A. Org. Lett. 2014, 16, 4332.
[25] Song, G.-Y.; Wylie, W. N. O.; Hou, Z.-M. J. Am. Chem. Soc. 2014, 136, 12209.
[26] Teng, H.-L.; Luo, Y.; Wang, B.-L.; Zhang, L.; Nishiura, M.; Hou, Z.-M. Angew. Chem., Int. Ed. 2016, 55, 15406.
[27] Teng, H.-L; Luo, Y.; Nishiura, M.; Hou, Z.-M. J. Am. Chem. Soc. 2017, 139, 16506.
[28] Dieckmann, M.; Jang, Y.-S.; Cramer, N. Angew. Chem., Int. Ed. 2015, 54, 12149.
[29] Kossler, D.; Cramer, N. J. Am. Chem. Soc. 2015, 137, 12478.
[30] Hyster, T. K.; Knorr, L.; Ward, T. R.; Rovis, T. Science 2012, 338, 500.
[31] Zheng, J.; Cui, W.-J.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 5242.
[32] (a) Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7, 2333.
(b) Xie, J.-H.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Fan, B.-M.; Duan, H.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2003, 125, 4404.
(c) Li, S.-Y.; Zhang, J.-W.; Li, X.-L.; Cheng, D.-J.; Tan, B. J. Am. Chem. Soc. 2016, 138, 16561.
[33] Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 5215.
[34] Jia, Z.-J.; Merten, C.; Gontla, R.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2017, 56, 2429.
[35] (a) Potowski, M.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2012, 51, 9512.
(b) Potowski, M.; Antonchick, A. P.; Waldmann, H. Chem. Commun. 2013, 49, 7800.
(c) He, Z.-L.; Teng, H.-L.; Wang, C.-J. Angew. Chem., Int. Ed. 2013, 52, 2934.
[36] (a) Gotoh, H.; Masui, R.; Ogino, H.; Shoji, M.; Hayashi, Y. Angew. Chem., Int. Ed. 2006, 45, 6853.
(b) Gotoh, H.; Ogino, H.; Ishikawa, H.; Hayashi, Y. Tetrahedron 2010, 66, 4894.
[37] Wang, S.-G.; Park, S. H.; Cramer, N. Angew. Chem. 2018, 130, 5557.
[38] Smits, G.; Audic, B.; Wodrich, M. D.; Corminboeuf, C.; Cramer, N. Chem. Sci. 2017, 8, 7174.
[39] Audic, B.; Wodrich, M. D.; Cramer, N. Chem. Sci. 2019, 10, 781.
[40] Teng, H.-L.; Ma, Y.-H.; Zhan, G.; Nishiura, M.; Hou, Z.-M. ACS Catal. 2018, 8, 4705.
[41] Ye, B.-H.; Cramer, N. Angew. Chem. 2014, 126, 8030.
[42] Zheng, J.; Wang, S.-B.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2015, 137, 4880.
[43] Chidipudi, S. R.; Burns, D. J.; Khan, I.; Lam, H. W. Angew. Chem., Int. Ed. 2015, 54, 13975.
[44] Jang, Y.-S.; Dieckmann, M.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 15088.
[45] Kossler, D.; Perrin, F. G.; Suleymanov, A. A.; Kiefer, G.; Scopelliti, R.; Severin, K.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 11490.
[46] Zheng, J.; You, S.-L. Angew. Chem., Int. Ed. 2014, 53, 13244.

文章导航

/