由氨茴内酐合成12H-色烯[2,3-b]喹啉-12-酮和6H-色烯[4,3-b]喹啉-6-酮
收稿日期: 2019-03-19
修回日期: 2019-04-19
网络出版日期: 2019-05-06
基金资助
国家自然科学基金(No.21202112)、教育部博士点基金新教师类项目(No.20123201120019)、江苏高校优势学科建设工程资助项目.
Synthesis of 12H-Chromeno[2,3-b]quinolin-12-one and 6H-Chromeno[4,3-b]quinolin-6-one from Anthranil
Received date: 2019-03-19
Revised date: 2019-04-19
Online published: 2019-05-06
Supported by
Project supported by the National Natural Science Foundation of China (No. 21202112), the Ph.D. Programs Foundation of Ministry of Education (No. 20123201120019) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
孙婉婉 , 毛玉健 , 蒋静 , 余靓 , 陈凌云 , 胡延维 , 张士磊 . 由氨茴内酐合成12H-色烯[2,3-b]喹啉-12-酮和6H-色烯[4,3-b]喹啉-6-酮[J]. 有机化学, 2019 , 39(9) : 2525 -2533 . DOI: 10.6023/cjoc201903034
Two heterocyclic compounds 12H-chromeno[2,3-b]quinolin-12-one and 6H-chromeno[4,3-b]quinolin-6-one could be synthesized by the reaction of anthranil with 4-hydroxycoumarin under high temperature conditions. The reaction is a thermo-promoted transformation, without the assistance of catalysts or additives, and without the generation of toxic wastes. This one-step reaction is superior to other reported methods for the preparation of such heterocycles.
[1] Jin, H.-M.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 794.
[2] Jin, H.-M.; Tian, B.; Song, X.-L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 12688.
[3] Li, L.; Wang, H.; Yu, S.-J.; Yang, X.-F.; Li, X.-W. Org. Lett. 2016, 18, 3662.
[4] Yu, S.-J.; Tang, G.-D.; Li, Y.-Z.; Zhou, X.-K.; Lan, Y.; Li, X.-W. Angew. Chem. Int. Ed. 2016, 55, 8696.
[5] Yu, S.-J.; Li, Y.-Y.; Zhou, X.-K.; Wang, H.; Kong, L.-H.; Li, X.-W. Org. Lett. 2016, 18, 2812.
[6] Wang, M.-M.; Kong, L.-H.; Wang, F.; Li, X.-W. Adv. Synth. Catal. 2017, 359, 4411.
[7] Zou, M.-C.; Liu, J.-Z.; Tang, C.-H.; Jiao, N. Org. Lett. 2016, 18, 3030.
[8] Shi, L.-L.; Wang, B.-Q. Org. Lett. 2016, 18, 2820.
[9] Biswas, A.; Karmakar, U.; Nandi, S.; Samanta, R. J. Org. Chem. 2017, 82, 8933.
[10] Wang, F.; Xu, P.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2018, 20, 2204.
[11] Wang, Z.-H.; Zhang, H.-H.; Wang, D.-M.; Xu, P.-F.; Luo, Y.-C. Chem. Comm. 2017, 53, 8521.
[12] Sahani, R. L.; Liu, R. S. Angew. Chem. Int. Ed. 2017, 56, 12736.
[13] Lei, X.-Q.; Gao, M.-H.; Tang, Y.-F. Org. Lett. 2016, 18, 4990.
[14] Tiwari, D. K.; Phanindrudu, M.; Wakade, S. B.; Nanubolu, J. B.; Tiwari, D. K. Chem. Commun. 2017, 53, 5302.
[15] Wakade, S. B.; Tiwari, D. K.; Ganesh, P. S. K. P.; Phanindrudu, M.; Likhar, P. R.; Tiwari, D. K. Org. Lett. 2017, 19, 4948.
[16] Jiang, J.; Cai, X.; Hu, Y.-W.; Liu, X.-J.; Chen, X.-D.; Wang, S.-Y.; Zhang, Y.-N.; Zhang, S.-L. J. Org. Chem. 2019, 84, 2022.
[17] Qian, P.-F.; Wan, H.-X.; Jiang, J.; Hu, Y.-W.; Chen, X.-B.; Zhang, S.-L. Chin. J. Org. Chem. 2016, 36, 1878.
[18] Weng, Y.-Y.; Zhou, H.; Sun, C.; Xie, Y.-Y.; Su, W.-K. J. Org. Chem. 2017, 82, 9047.
[19] Thigulla, Y.; Kumar, T. U.; Trivedi, P.; Ghosh, B.; Bhattacharya, A. ChemistrySelect 2017, 2, 2721.
[20] Sashidhara, K. V.; Palnati, G. R.; Singh, L. R.; Upadhyay, A.; Avula, S. R.; Kumara, A.; Kant, R. Green Chem. 2015, 17, 3766.
[21] Rajawinslin, R. R.; Gawande, S. D.; Kavala, V.; Huang, Y.-H.; Kuo, C.-W.; Kuo, T.-S.; Chen, M.-L.; He, C.-H.; Yao, C.-F. RSC Adv. 2014, 4, 37806.
[22] Wu, J.; Wang, X.-C. Org. Biomol. Chem. 2006, 4, 1348.
[23] Ishigu, T.; Ukawa, K.; Sugihara, H.; Nohara, A. Heterocycles 1981, 16, 733.
[24] Hansch, C.; Sammes, P.; Taylor, J. Comprehensive Medicinal Chemistry, Pergamon, London, 1990, Vol. 6.
[25] Singh. G.; Singh, R.; Girdhar, N. K.; Ishar, M. P. S. Tetrahedron 2002, 58, 2471.
[26] Marsais, F.; Godard, A.; Queguiner, G. J. Heterocycl. Chem. 1989, 26, 1589.
[27] Zhang, X.-Y.; Guo, X.-J.; Fang, L.-L.; Song, Y.-P.; Fan, X.-S. Eur. J. Org. Chem. 2013, 8087.
[28] Singh, J. B.; Mishra, K.; Gupta, T.; Singh, R. M. ChemistrySelect 2017, 2, 1207.
[29] Weng, Y.-Y.; Zhou, H.; Sun, C.; Xie, Y.-Y.; Su, W.-K. J. Org. Chem. 2017, 82, 9047.
/
〈 |
|
〉 |