综述与进展

点击反应在糖聚肽及其类似物合成中的应用

  • 王昭 ,
  • 郝凌云 ,
  • 张小娟 ,
  • 盛瑞隆
展开
  • a 金陵科技学院材料工程学院 南京市视光材料与技术重点实验室 南京 211169;
    b CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, 9000-390 Portugal;
    c 中国科学院上海有机化学研究所 上海 200032

收稿日期: 2019-03-21

  修回日期: 2019-04-19

  网络出版日期: 2019-05-06

基金资助

国家自然科学基金(No.21372251)、金陵科技学院高层次人才科研启动基金(No.jit-b-201828)、葡萄牙科学技术基金(No.PEst-OE/QUI/UI0674/2019)、科学仪器和基础设备专项基金(No.M1420-01-0145-FEDER-000008)、区域研究技术创新基金(No.M1420-01-0145-FEDER-000005)子课题2017-ISG-003资助项目.

Advances of “Click” Reaction Approach in Glycopolypeptide Synthesis

  • Wang Zhao ,
  • Hao Lingyun ,
  • Zhang Xiaojuan ,
  • Sheng Ruilong
Expand
  • a School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China;
    b CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal;
    c Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received date: 2019-03-21

  Revised date: 2019-04-19

  Online published: 2019-05-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21372251), the Research Initiation Fund for High-level Talents of Jinling University of Science and Technology (No. jit-b-201828), the Fundação para a Ciência e a Tecnologia (No. PEst-OE/QUI/UI0674/2019), the Reforço do Investimento em Equipamentos e Infraestruturas Científicas na RAM (No. M1420-01-0145-FEDER-000008), and the Sub Topic 2017-ISG-003 of Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (No. M1420-01-0145-FEDER-000005).

摘要

糖聚肽是一类由聚肽/聚氨基酸与糖类化合物共价相连构成的高分子化合物,因其良好的生物相容性及独特的生物学性能,在自组装、组织工程、药物输送等领域均显示出广泛的应用前景,成为近年来蓬勃发展的热点领域.高效合成结构规整可控的糖聚肽是该领域的热点和难点.点击化学的快速发展为糖聚肽的合成提供了高效便捷的途径.系统综述了点击反应在糖聚肽两种合成策略中的应用——通过聚合后修饰法将糖分子引入到聚氨基酸前体侧链上以及对糖苷化的α-氨基酸-N-羧酸酐(glyco-NCA)"可点击"化学单体的开环聚合反应,同时也总结了通过点击反应将含糖功能基元化学偶联到聚氨基酸链末端合成糖聚肽类似物的策略,并对其优缺点和发展方向进行了简要讨论.

本文引用格式

王昭 , 郝凌云 , 张小娟 , 盛瑞隆 . 点击反应在糖聚肽及其类似物合成中的应用[J]. 有机化学, 2019 , 39(9) : 2379 -2391 . DOI: 10.6023/cjoc201903038

Abstract

Synthetic glycopolypeptides, as analogues of natural glycoproteins, are an emerging class of bioinspired polymers with excellent biocompatibility. They can mimic the structure and functions of natural glycoproteins, and show great potential for biological applications, such as biomolecular recognition, drug/gene delivery, cell adhesion and targeting, as well as cell culture and tissue engineering. Nevertheless, the efficient and lab/pilot scale preparation of well-defined and tunable glycopolypeptides with complex polymer structures, has been a challenging field until now. The fast development of "Click" chemistry/reaction offers versatile and powerful tools for the synthesis of glycopolypeptides. The state of arts for the development of new "Click" synthetic strategies and methods in the preparation of glycopolypeptides, mainly including post-polymerization glycosylation of synthetic polypeptides and ring-opening polymerization of glycosylated N-carboxyanhydride (glyco-NCA) is reviewed. The pros and cons of current developments for the synthesis of glycopolypeptide analogues and their future perspectives are also stated and discussed.

参考文献

[1] Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.
[2] Helenius, A.; Aebi, M. Science 2001, 291, 2364.
[3] Miura, Y. Polym. J. 2012, 44, 679.
[4] Kiessling, L. L.; Grim, J. C. Chem. Soc. Rev. 2013, 42, 4476.
[5] Yilmaz, G.; Becer, C. R. Eur. Polym. J. 2013, 49, 3046.
[6] Pratt, M. R.; Bertozzi, C. R. Chem. Soc. Rev. 2005, 34, 58.
[7] Bonduelle, C.; Lecommandoux, S. Biomacromolecules 2013, 14, 2973.
[8] Krannig, K. S.; Schlaad, H. Soft Matter. 2014, 10, 4228.
[9] Xiao, C. S.; Ding, J. X.; He, C. L.; Chen, X. S. Acta Polym. Sin. 2018, 45(in Chinese). (肖春生, 丁建勋, 贺超良, 陈学思, 高分子学报, 2018, 45.)
[10] Kempe, K.; Krieg, A.; Becer, C. R.; Schubert, U. S. Chem. Soc. Rev. 2012, 41, 176.
[11] Hu, Q.; Li, Y. X.; Wang, J. Y.; Li, Y. Y. Acta Chim. Sinica 2015, 73, 416(in Chinese). (胡齐, 李玉祥, 王静媛, 李亚鹏, 化学学报, 2015, 73, 416.)
[12] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
[13] Wang, Z.; Luo, Z. J.; Li, M. R.; Sheng, R. L.; Luo, T.; Cao, A. M. Acta Polym. Sin. 2016, 667(in Chinese). (王昭, 罗志基, 李明睿, 盛瑞隆, 罗挺, 曹阿民, 高分子学报, 2016, 667.)
[14] Döhler, D.; Michael, P.; Binder, W. H. Acc. Chem. Res. 2017, 50, 2610.
[15] Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Polym. Chem. 2018, 9, 2853.
[16] Qin, A.; Liu, Y.; Tang, B. Z. Macromol. Chem. Phys. 2015, 216, 818.
[17] Such, G. K.; Johnston, A. P. R.; Liang, K.; Caruso, F. Prog. Polym. Sci. 2012, 37, 985.
[18] Hoyle, C. E.; Lowe, A. B.; Bowman, C. N. Chem. Soc. Rev. 2010, 39, 1355.
[19] Hoyle, C. E.; Bowman, C. N. Angew. Chem., Int. Ed. 2010, 49, 1540.
[20] Liu, Q.; Zhang, Q. Y.; Chen, S. J.; Zhou, J.; Lei, X. F. Chin. J. Org. Chem. 2012, 32, 1846(in Chinese). (刘清, 张秋禹, 陈少杰, 周健, 雷星锋, 有机化学, 2012, 32, 1846.)
[21] Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E. J.; Zhong, Z. Biomaterials 2014, 35, 4969.
[22] Sowinska, M.; Urbanczyk-Lipkowska, Z. New J. Chem. 2014, 38, 2168.
[23] Martens, S.; Holloway, J. O.; Du Prez, F. E. Macromol. Rapid Commun. 2017, 38, 1.
[24] Lowe, A. B. Polym. Chem. 2014, 5, 4820.
[25] Li, B.; Huang, D.; Qin, A.; Tang, B. Z. Macromol. Rapid Commun. 2018, 39, 1.
[26] Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Polym. Chem. 2018, 9, 2853.
[27] Huang, Z. H.; Zhou, Y. Y.; Wang, Z. M.; Li, Y.; Zhang, W.; Zhou, N. C.; Zhang, Z. B.; Zhu, X. L. Chin. J. Polym. Sci. 2017, 35, 317.
[28] Tang, W.; Becker, M. L. Chem. Soc. Rev. 2014, 43, 7013.
[29] Tu, X. Y.; Liu, M. Z.; Wei, H. J. Polym. Sci., Part A:Polym. Chem. 2016, 54, 1447.
[30] Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T. Adv. Mater. 2017, 291606100.
[31] Xiong, X. Q.; Yi, C. Sci. Sin. Chim. 2013, 43, 783(in Chinese). (熊兴泉, 易超, 中国科学:化学, 2013, 43, 783.)
[32] Huang, D.; Qin, A. J.; Tang, B. Z. Acta Polym. Sin. 2017, 178(in Chinese). (黄蝶, 秦安军, 唐本忠, 高分子学报, 2017, 178.)
[33] Bonduelle, C.; Lecommandoux, S. Biomacromolecules 2013, 14, 2973.
[34] Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H. A.; Zhong, Z. Prog. Polym. Sci. 2014, 39, 330.
[35] Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Chem. Commun. 2014, 50, 139.
[36] Li, X.; Chen, G. Polym. Chem. 2015, 6, 1417.
[37] Schatz, C.; Louguet, S.; Le Meins, J.-F.; Lecommandoux, S. Angew. Chem., Int. Ed. 2009, 48, 2572.
[38] Huang, J.; Bonduelle, C.; Thévenot, J.; Lecommandoux, S.; Heise, A. J. Am. Chem. Soc. 2012, 134, 119.
[39] Kramer, J. R.; Rodriguez, A. R.; Choe, U.-J.; Kamei, D. T.; Deming, T. J. Soft Matter. 2013, 9, 3389.
[40] Pati, D.; Das, S.; Patil, N. G.; Parekh, N.; Anjum, D. H.; Dhaware, V.; Ambade, A. V.; Sen Gupta, S. Biomacromolecules 2016, 17, 466.
[41] Liu, Y.; Zhang, Y.; Wang, Z.; Wang, J.; Wei, K.; Chen, G.; Jiang, M. J. Am. Chem. Soc. 2016, 138, 12387.
[42] Das, S.; Sharma, D. K.; Chakrabarty, S.; Chowdhury, A.; Sen Gupta, S. Langmuir 2015, 31, 3402.
[43] Pati, D.; Kalva, N.; Das, S.; Kumaraswamy, G.; Sen Gupta, S.; Ambade, A. V. J. Am. Chem. Soc. 2012, 134, 7796.
[44] Stöhr, T.; Blaudszun, A. R.; Steinfeld, U.; Wenz, G. Polym. Chem. 2011, 2, 2239.
[45] Ding, J.; Xiao, C.; Li, Y.; Cheng, Y.; Wang, N.; He, C.; Zhuang, X.; Zhu, X.; Chen, X. J. Control. Release 2013, 169, 193.
[46] Ren, K.; He, C.; Xiao, C.; Li, G.; Chen, X. Biomaterials 2015, 51, 238.
[47] Klink, D. T.; Chao, S.; Glick, M. C.; Scanlin, T. F. Mol. Ther. 2001, 3, 831.
[48] Kramer, J. R.; Schmidt, N. W.; Mayle, K. M.; Kamei, D. T.; Wong, G. C. L.; Deming, T. J. ACS Cent. Sci. 2015, 1, 83.
[49] Jacobs, J.; Byrne, A.; Gathergood, N.; Keyes, T. E.; Heuts, J. P. A.; Heise, A. Macromolecules 2014, 47, 7303.
[50] Kramer, J. R.; Onoa, B.; Bustamante, C.; Bertozzi, C. R. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 12574.
[51] Kramer, J. R.; Deming, T. J. Polym. Chem. 2014, 5, 671.
[52] Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G. Chem. Rev. 2009, 109, 5528.
[53] Cheng, J.; Deming, T. J. Top. Curr. Chem. 2012, 310, 1.
[54] Brzezinska, K. R.; Deming, T. J. Macromol. Biosci. 2004, 4, 566.
[55] Deming, T. J. Peptide Hybrid Polymers, Berlin, Heidelberg, 2006, pp. 1~18.
[56] Deming, T. J. Nature 1997, 390, 386.
[57] Deming, T. J. J. Am. Chem. Soc. 1998, 120, 4240.
[58] Deming, T. J.; Curtin, S. A. J. Am. Chem. Soc. 2000, 122, 5710.
[59] Deming, T. J. Adv. Drug Delivery Rev. 2002, 54, 1145.
[60] Curtin, S. A.; Deming, T. J. J. Am. Chem. Soc. 1999, 121, 7427.
[61] Rhodes, A. J.; Deming, T. J. J. Am. Chem. Soc. 2012, 134, 19463.
[62] Brzezinska, K. R.; Curtin, S. A.; Deming, T. J. Macromolecules 2002, 35, 2970.
[63] Zhao, L.; Li, N.; Wang, K.; Shi, C.; Zhang, L.; Luan, Y. A Bio-materials 2014, 35, 1284.
[64] Shen, Y.; Fu, X.; Fu, W.; Li, Z. Chem. Soc. Rev. 2015, 44, 612.
[65] Wibowo, S. H.; Sulistio, A.; Wong, E. H. H.; Blencowe, A.; Qiao, G. G. Chem. Commun. 2014, 50, 4971.
[66] Cai, C.; Lin, J.; Lu, Y.; Zhang, Q.; Wang, L. Chem. Soc. Rev. 2016, 45, 5985.
[67] Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Chem. Commun. 2014, 50, 139.
[68] Liarou, E.; Varlas, S.; Skoulas, D.; Tsimblouli, C.; Sereti, E.; Dimas, K.; Iatrou, H. Prog. Polym. Sci. 2018, 83, 28.
[69] Deming, T. J. Chem. Rev. 2016, 116, 786.
[70] Song, Z.; Han, Z.; Lv, S.; Chen, C.; Chen, L.; Yin, L.; Cheng, J. Chem. Soc. Rev. 2017, 46, 6570.
[71] Zhou, X.; Li, Z. Adv. Healthcare Mater. 2018, 7, 1800020.
[72] Wang, M. Z.; Du, J. Z. Acta Polym. Sin. 2014, 1183(in Chinese). (王明智, 杜建忠, 高分子学报, 2014, 1183.)
[73] Tian, Z.; Wang, M.; Zhang, A.; Feng, Z. Polymer 2008, 49, 446.
[74] Zeng, X.; Murata, T.; Kawagishi, H.; Usui, T.; Kobayashi, K. Carbohydr. Res. 1998, 312, 209.
[75] Zeng, X.; Murata, T.; Kawagishi, H.; Usui, T.; Kobayashi, K. Biosci. Biotechnol. Biochem. 1998, 62, 1171.
[76] Kobayashi, K.; Tawada, E.; Akaike, T.; Usui, T. Biochim. Biophys. Acta 1997, 1336, 117.
[77] Mildner, R.; Menzel, H. J. Polym. Sci., Part A:Polym. Chem. 2013, 51, 3925.
[78] Lavilla, C.; Yilmaz, G.; Uzunova, V.; Napier, R.; Becer, C. R.; Heise, A. Biomacromolecules 2017, 18, 1928.
[79] Midoux, P.; Mendes, C.; Legrand, A.; Raimond, J.; Mayer, R.; Monsigny, M.; Roche, A. C. Nucleic Acids Res. 1993, 21, 871.
[80] Wang, R.; Xu, N.; Du, F. S.; Li, Z. C. Chem. Commun. 2010, 46, 3902.
[81] Engler, A. C.; Lee, H.; Hammond, P. T. Angew. Chem., Int. Ed. 2009, 48, 9334.
[82] Xiao, C.; Zhao, C.; He, P.; Tang, Z.; Chen, X.; Jing, X. Macromol. Rapid Commun. 2010, 31, 991.
[83] Ding, J.; Xiao, C.; Li, Y.; Cheng, Y.; Wang, N.; He, C.; Zhuang, X.; Zhu, X.; Chen, X. J. Controlled Release 2013, 169, 193.
[84] Borase, T.; Ninjbadgar, T.; Kapetanakis, A.; Roche, S.; O'Connor, R.; Kerskens, C.; Heise, A.; Brougham, D. F. Angew. Chem., Int. Ed. 2013, 52, 3164.
[85] Kapetanakis, A.; Heise, A. Eur. Polym. J. 2015, 69, 483.
[86] Dhaware, V.; Shaikh, A.; Kar, M.; Hotha, S.; Gupta, S. Langmuir 2013, 29, 5659.
[87] Huang, J.; Habraken, G.; Audouin, F.; Heise, A. Macromolecules 2010, 43, 6050.
[88] Bonduelle, C.; Huang, J.; Ibarboure, E.; Heise, A.; Lecommandoux, S. Chem. Commun. 2012, 48, 8353.
[89] Bonduelle, C.; Huang, J.; Mena-Barragan, T.; Ortiz Mellet, C.; Decroocq, C.; Etame, E.; Heise, A.; Compain, P.; Lecommandoux, S. Chem. Commun. 2014, 50, 3350.
[90] Bonduelle, C.; Oliveira, H.; Gauche, C.; Huang, J.; Heise, A.; Lecommandoux, S. Chem. Commun. 2016, 52, 11251.
[91] Gauche, C.; Lecommandoux, S. Polymer 2016, 107, 474.
[92] Tang, H.; Zhang, D. Biomacromolecules 2010, 11, 1585.
[93] Rhodes, A. J.; Deming, T. J. ACS Macro Lett. 2013, 2, 351.
[94] Yang, H. K.; Bao, J. F.; Mo, L.; Yang, R. M.; Xu, X. D.; Tang, W. J.; Lin, J. T.; Wang, G. H.; Zhang, L. M.; Jiang, X. Q. RSC Adv. 2017, 7, 21093.
[95] Sun, J.; Schlaad, H. Macromolecules 2010, 43, 4445.
[96] Krannig, K. S.; Sun, J.; Schlaad, H. Biomacromolecules 2014, 15, 978.
[97] Krannig, K. S.; Schlaad, H. J. Am. Chem. Soc. 2012, 134, 18542.
[98] Krannig, K. S.; Huang, J.; Heise, A.; Schlaad, H. Polym. Chem. 2013, 4, 3981.
[99] Kramer, J. R.; Deming, T. J. Biomacromolecules 2012, 13, 1719.
[100] Kramer, J. R.; Deming, T. J. Chem. Commun. 2013, 49, 5144.
[101] Rüde, E.; Westphal, O.; Hurwitz, E.; Fuchs, S.; Sela, M. Immunochemistry 1966, 3, 137.
[102] Kramer, J. R.; Deming, T. J. J. Am. Chem. Soc. 2010, 132, 15068.
[103] Kramer, J. R.; Deming, T. J. J. Am. Chem. Soc. 2012, 134, 4112.
[104] Krannig, K. S.; Doriti, A.; Schlaad, H. Macromolecules 2014, 47, 2536.
[105] Wang, R.; Xu, N.; Du, F. S.; Li, Z. C. Acta Polym. Sin. 2013, 774(in Chinese). (王睿, 许宁, 杜福胜, 李子臣, 高分子学报, 2013, 774.)
[106] Wang, S. S.-S.; How, S.-C.; Chen, Y.-D.; Tsai, Y.-H.; Jan, J.-S. J. Mater. Chem. B 2015, 3, 5220.
[107] Upadhyay, K. K.; Le Meins, J.-F.; Misra, A.; Voisin, P.; Bouchaud, V.; Ibarboure, E.; Schatz, C.; Lecommandoux, S. Biomacromolecules 2009, 10, 2802.
[108] Yang, H. K.; Zhang, L. M. Mater. Sci. Eng., C:Mater. Biol. Appl. 2014, 41, 36.
[109] Wang, Z.; Sheng, R.; Luo, T.; Sun, J.; Cao, A. Polym. Chem. 2017, 8, 472.
[110] Upadhyay, K. K.; Bhatt, A. N.; Castro, E.; Mishra, A. K.; Chuttani, K.; Dwarakanath, B. S.; Schatz, C.; Le Meins, J. F.; Misra, A.; Lecommandoux, S. Macromol. Biosci. 2010, 10, 503.
[111] Upadhyay, K. K.; Mishra, A. K.; Chuttani, K.; Kaul, A.; Schatz, C.; Le Meins, J. F.; Misra, A.; Lecommandoux, S. Nanomedicine 2012, 8, 71.
[112] Upadhyay, K. K.; Bhatt, A. N.; Mishra, A. K.; Dwarakanath, B. S.; Jain, S.; Schatz, C.; Le Meins, J.-F.; Farooque, A.; Chandraiah, G.; Jain, A. K.; Misra, A.; Lecommandoux, S. Biomaterials 2010, 31, 2882.
[113] Mohamed Wali, A. R.; Zhou, J.; Ma, S.; He, Y.; Yue, D.; Tang, J. Z.; Gu, Z. Int. J. Pharm. 2017, 525, 191.
[114] Bonduelle, C.; Mazzaferro, S.; Huang, J.; Lambert, O.; Heise, A.; Lecommandoux, S. Faraday Discuss. 2013, 166, 137.
[115] Fu, L.; Sun, C.; Yan, L. ACS Appl. Mater. Interfaces 2015, 7, 2104.
[116] Pranantyo, D.; Xu, L. Q.; Hou, Z.; Kang, E. T.; Chan-Park, M. B. Polym. Chem. 2017, 8, 3364.

文章导航

/