综述与进展

碱土金属有机氢化物的研究进展

  • 石向辉 ,
  • 刘知洲 ,
  • 程建华
展开
  • a 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022;
    b 中国科学技术大学应用化学与工程学院 合肥 230029

收稿日期: 2019-03-21

  修回日期: 2019-04-23

  网络出版日期: 2019-05-06

基金资助

国家自然科学基金(No.21672202)及中国科学院"百人计划"资助项目.

Research Progress of Molecular Alkaline-Earth Metal Hydrides

  • Shi Xianghui ,
  • Liu Zhizhou ,
  • Cheng Jianhua
Expand
  • a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022;
    b College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029

Received date: 2019-03-21

  Revised date: 2019-04-23

  Online published: 2019-05-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21672202) and the "Hundred Talent Program" of Chinese Academy of Sciences.

摘要

碱土金属(Mg,Ca,Sr,Ba)越来越引起大家的兴趣,这是由于它们价格低廉、无毒,可以替代许多有机催化和化学计量反应中昂贵的过渡金属.随着碱土金属离子半径的增大(Mg2+2+2+2+),碱土金属有机氢化物的离子性以及键长增加,键能降低,相应的金属氢化物更易发生Schlenk重排生成不溶无机盐[AeH2](Ae=Mg,Ca,Sr,Ba),限制了其发展.近年来,人们通过选择合适的配体,合成并表征了一系列碱土金属有机氢化物,择优研究了它们与小分子的有机反应.碱土金属有机氢化物研究的最新进展将被详细介绍.

本文引用格式

石向辉 , 刘知洲 , 程建华 . 碱土金属有机氢化物的研究进展[J]. 有机化学, 2019 , 39(6) : 1557 -1567 . DOI: 10.6023/cjoc201903043

Abstract

Alkaline-earth metals continue to receive growing interest, as they are used as low-cost and non-toxic alternatives to transition-metals in various organic transformations. As ionic character and bond lengths increase along the row in the order Mg2+2+2+2+, bond energies decrease along the same row, the corresponding metal hydrides are apt to the formation of insoluble metal hydrides[AeH2] (Ae=Mg, Ca, Sr, Ba) through Schlenk equilibrium in solution. Recently, a series of alkaline-earth metal hydrides stabilized by suitable ligands were discovered and characterized, and stoichiometric and catalytic reactions with small molecules were studied as well. In this paper, the recent progress in molecular alkaline-earth metal hydrides is reviewed.

参考文献

[1] (a) Naglav, D.; Buchner, M. R.; Bendt, G.; Kraus, F.; Schulz, S. Angew. Chem., Int. Ed. 2016, 55, 10562.
(b) Perera, L. C.; Raymond, O.; Henderson, W.; Brothers, P. J.; Plieger, P. G. Coord. Chem. Rev. 2017, 352, 264.
[2] Shannon, R. D. Acta Crystallogr. A 1976, 32, 751.
[3] Schlenk, W.; Schlenk, W. Jr. Ber. Dtsch. Chem. Ges. B 1929, 62, 920.
[4] (a) Gallagher, D. J.; Henderson, K. W.; Kennedy, A. R.; O'Hara, C. T.; Mulvey, R. E.; Rowlings, R. B. Chem. Commun. 2002, 376.
(b) Andrikopoulos, P. C.; Armstrong, D. R.; Kennedy, A. R.; Mulvey, R. E.; O'Hara, C. T.; Rowlings, R. B. Eur. J. Inorg. Chem. 2003, 3354.
[5] Mukherjee, D.; Okuda, J. Angew. Chem., Int. Ed. 2018, 57, 1458.
[6] Arrowsmith, M.; Hill, M. S.; MacDougall, D. J.; Mahon, M. F. Angew. Chem., Int. Ed. 2009, 48, 4013.
[7] Lemmerz, L. E.; Mukherjee, D.; Spaniol, T. P.; Wong, A.; Ménard, G.; Maron, L.; Okuda, J. Chem. Commun. 2019, 55, 3199.
[8] (a) Green, S. P.; Jones, C.; Stasch, A. Angew. Chem., Int. Ed. 2008, 47, 9079.
(b) Spielmann, J.; Piesik, D. F. J.; Harder, S. Chem. Eur. J. 2010, 16, 8307.
(c) Lalrempuia, R.; Kefalidis, C. E.; Bonyhady, S. J.; Schwarze, B.; Maron, L.; Stasch, A.; Jones, C. J. Am. Chem. Soc. 2015, 137, 8944.
[9] (a) Hill, M. S.; Liptrot, D. J.; Weetman, C. Chem. Soc. Rev. 2016, 45, 972.
(b) Li, Y. Y; Cheng, Y. H.; Shan, C. H.; Zhang, J.; Xu, D. D.; Bai, R. P.; Qu, L. B.; Lan, Y. Chin. J. Org. Chem. 2018, 38, 1885 (in Chinese).(李园园, 程玉华, 单春晖, 张敬, 徐冬冬, 白若鹏, 屈凌波, 蓝宇, 有机化学, 2018, 38, 1885.)
[10] Anker, M. D.; Hill, M. S.; Lowe, J. P.; Mahon, M. F. Angew. Chem., Int. Ed. 2015, 54, 10009.
[11] (a) Bonyhady, S. J.; Jones, C.; Nembenna, S.; Stasch, A.; Edwards, A. J.; McIntyre, G. J. Chem. Eur. J. 2010, 16, 938.
(b) Arrowsmith, M.; Maitland, B.; Kociok-Kohn, G.; Stasch, A.; Jones, C.; Hill, M. S. Inorg. Chem. 2014, 53, 10543.
(c) Lalrempuia, R.; Stasch, A.; Jones, C. Chem. Asian J. 2015, 10, 447.
(d) Schnitzler, S.; Spaniol, T. P.; Maron, L.; Okuda, J. Chem. Eur. J. 2015, 21, 11330.
(e) Xie, H.; Hua X.; Liu, B.; Wu C.; Cui, D. J. Organomet. Chem. 2015, 798, 335.
(f) Rauch, M.; Ruccolo, S.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 13264.
[12] Rauch, M.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 18162.
[13] (a) Langer, J.; Maitland, B.; Grams, S.; Ciucka, A.; Pahl, J.; Elsen, H.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 5021.
(b) Martin, D.; Beckerle, K.; Schnitzler, S.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2015, 54, 4115.
[14] Harder, S.; Brettar, J. Angew. Chem., Int. Ed. 2006, 45, 3474.
[15] (a) Spielmann, J.; Harder, S. Chem. Eur. J. 2007, 13, 8928.
(b)Harder, S. Chem. Commun. 2012, 48, 11165.
[16] Spielmann, J.; Buch, F.; Harder, S. Angew. Chem., Int. Ed. 2008, 47, 9434.
[17] Intemann, J.; Bauer, H.; Pahl, J.; Maron, L.; Harder, S. Chem.-Eur. J. 2015, 21, 11452.
[18] Anker, M. D.; Kefalidis, C. E.; Yang, Y.; Fang, J.; Hill, M. S.; Mahon, M. F.; Maron, L. J. Am. Chem. Soc. 2017, 139, 10036.
[19] Wilson, A. S. S.; Hill, M. S.; Mahon, M. F.; Dinoi, C.; Maron, L. Science 2017, 358, 1168.
[20] Wu, X.; Zhao, L.; Jin, J.; Pan, S.; Li, W.; Jin, X.; Wang, G.; Zhou, M.; Frenking, G. Science 2018, 361,912.
[21] Wilson, A. S. S.; Dinoi, C.; Hill, M. S.; Mahon, M. F.; Maron, L. Angew. Chem., Int. Ed. 2018, 57, 15500.
[22] (a) Causero, A.; Ballmann, G.; Pahl, J.; Zijlstra, H.; Farber, C.; Harder, S. Organometallics 2016, 35, 3350.
(b) Causero, A.; Elsen, H.; Pahl, J.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 6906.
(c) Bauer, H.; Alonso, M.; Färber, C.; Elsen, H.; Pahl, J.; Causero, A.; Ballmann, G.; Proft, F. D.; Harder, S. Nat. Cat. 2018, 1, 40.
[23] (a) Jochmann, P.; Davin, J. P.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2012, 51, 4452.
(b) Leich, V.; Spaniol, T. P.; Okuda, J. Inorg. Chem. 2015, 54, 4927.
(c) Leich, V.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2016, 55, 4794.
(d) Schuhknecht, D.; Lhotzky, C.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2017, 56, 12367.
[24] Maitland, B.; Wiesinger, M.; Langer, J.; Ballmann, G.; Pahl, J.; Elsen, H.; Farber, C.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 11880.
[25] De Bruin-Dickason, C. N.; Sutcliffe, T.; Lamsfus, C. A.; Deacon, G. B.; Maron, L.; Jones, C. Chem. Commun., 2018, 54, 786.
[26] Mukherjee, D.; Höllerhage, T.; Leich, V.; Spaniol, T. P.; Englert, U.; Maron, L.; Okuda, J. J. Am. Chem. Soc. 2018, 140, 3403.
[27] Rösch, B.; Gentner, T. X.; Elsen, H.; Fischer, C. A.; Langer, J.; Wiesinger, M.; Harder, S. Angew. Chem., Int. Ed. 2019, 58, 5396.
[28] Shi, X.; Hou, C.; Zhou, C.; Song, Y.; Cheng, J. Angew. Chem., Int. Ed. 2017, 56, 16650.
[29] Wiesinger, M.; Maitland, B.; Farber, C.; Ballmann, G.; Fischer, C.; Elsen, H.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 16654.
[30] Shi, X.; Qin, G.; Wang, Y.; Zhao, L.; Liu, Z.; Cheng, J. Angew. Chem., Int. Ed. 2019, 58. 4356.

文章导航

/