综述与进展

通过C-H键活化喹喔啉-2(1H)-酮催化功能化的研究进展

  • 毛璞 ,
  • 朱军亮 ,
  • 袁金伟 ,
  • 杨亮茹 ,
  • 肖咏梅 ,
  • 张长森
展开
  • a 河南工业大学化学化工学院 河南省天然药物化学院士工作站 郑州 450001;
    b 郑州大学化学与分子工程学院 郑州 450001

收稿日期: 2019-04-10

  修回日期: 2019-04-24

  网络出版日期: 2019-05-06

基金资助

河南省科技厅自然科学基金(Nos.172102210225,182102310675)、河南省教育厅自然科学基金(No.17A150005)、郑州市创新团基金(No.131PCXTD605)和河南工业大学青年骨干教师基金(No.2016003)资助项目.

Recent Advances on the Catalytic Functionalization of Quinoxalin- 2(1H)-ones via C-H Bond Activation

  • Mao Pu ,
  • Zhu Junliang ,
  • Yuan Jinwei ,
  • Yang Liangru ,
  • Xiao Yongmei ,
  • Zhang Changsen
Expand
  • a Academician Workstation for Natural Medicinal Chemistry of Henan Province, School of Chemistry & Chemical Engineering, Henan Univeristy of Technology, Zhengzhou 450001;
    b College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001

Received date: 2019-04-10

  Revised date: 2019-04-24

  Online published: 2019-05-06

Supported by

Project supported by the Department of Henan Province Natural Science and Technology Foundation (Nos. 172102210225 and 182102310675), the Natural Science Foundation in Henan Province Department of Education (No. 17A150005), the Program for Innovative Research Team from Zhengzhou (No. 131PCXTD605), and the Project of Youth Backbone Teachers of Henan University of Technology (No. 2016003).

摘要

喹喔啉-2(1H)-酮是天然产物和药物中存在的一种非常重要的N-杂环化合物,具有广泛的生物活性.近年来,研究者对喹喔啉-2(1H)-酮的C-H键活化和功能化的进行了大量的研究,包括烷基化、苄基化、酰化、芳基化、胺化、酰胺化、膦酰化、氟烷基化等.综述了近年来该领域的研究进展,并对其反应机理进行了探讨.

本文引用格式

毛璞 , 朱军亮 , 袁金伟 , 杨亮茹 , 肖咏梅 , 张长森 . 通过C-H键活化喹喔啉-2(1H)-酮催化功能化的研究进展[J]. 有机化学, 2019 , 39(6) : 1529 -1547 . DOI: 10.6023/cjoc201904025

Abstract

Quinoxalin-2(1H)-ones are very important N-heterocyclic moieties found in natural products and pharmaceuticals, and exhibit an amazingly wide spectrum of biological properties. Numerous efforts have been devoted to the development of efficient approaches for the C-H bond activation and functionalization of quinoxalin-2(1H)-ones in recent years, including alkylation, benzylation, acylation, arylation,amination, amidation, phosphonation, and fluoroalkylation. The recent advances in this area are summarized and their reaction mechanisms are discussed.

参考文献

[1] (a) Shi, L.; Zhou, H.; Wu, J.; Li, X. Mini-Rev. Org. Chem. 2015, 12, 96.
(b) Pereira, J. A.; Pessoa, A. M.; Cordeiro, M. N. D. S.; Fernandes, R.; Prudêncio, C.; Noronha, J. P.; Vieira, M. Eur. J. Med. Chem. 2015, 97, 664.
(c) Willardsen, J. A.; Dudley, D. A.; Cody, W. L.; Chi, L.; McClanahan, T. B.; Mertz, T. E.; Potoczak, R. E.; Narasimhan, L. S.; Holland, D. R.; Rapundalo, S. T.; Edmunds, J. J. J. Med. Chem. 2004, 47, 4089.
[2] (a) Wagle, S.; Adhikari, A. V.; Kumari, N. S. Ind. J. Chem. 2008, 47, 439.
(b) Badran, M. M.; Abouzid, K. A. M.; Hussein, M. H. M. Arch. Pharm. Res. 2003, 26, 107.
(c) TenBrink, R. E.; Im, W. B.; Sethy, V. H.; Tang, A. H.; Carter, D. B. J. Med. Chem. 1994, 37, 758.
[3] (a) Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903.
(b) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550.
[4] (a) Chen, X.; Li, J. J.; Hao, X. S.; Goodhu, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 78.
(b) Chen, X.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 12634.
(c) Zhang, Y.; Feng, J.; Li, C. J. J. Am. Chem. Soc. 2008, 130, 2900.
(d) He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang, M. Org. Lett. 2011, 13, 5016.
(e) Guo, S.; Kumar, P. S.; Yang, M. Adv. Synth. Catal. 2017, 359, 2.
(f) Jafarpour, F.; Darvishmolla, M. Org. Biomol. Chem. 2018, 16, 3396.
[5] Nikam, S. S.; Sahasrabudhe, A. D.; Shastri, R. K.; Ramanathan, S. Synthesis 1983, 145.
[6] (a) Velaparthi, S.; Brunsteiner, M.; Uddin, R.; Wan, B.; Franzblau, S. G.; Petukhov, P. A. J. Med. Chem. 2008, 51, 1999.
(b) Wang, A.; Li, X.; Chen, C.; Wu, H.; Qi, Z.; Hu, C.; Yu, K.; Wu, J.; Liu, J.; Liu, X.; Hu, Z.; Wang, W.; Wang, W.; Wang, W.; Wang, L.; Wang, B.; Liu, Q.; Li, L.; Ge, J.; Ren, T.; Zhang, S.; Xia, R.; Liu, J.; Liu, Q. J. Med. Chem. 2017, 60, 8407.
(c) Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J. J. Med. Chem. 1973, 16, 1207.
[7] (a) Fujiwara, T.; O'Hagan, D. J. Fluorine Chem. 2014, 167, 16.
(b) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832.
(c) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
(d) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.
[8] Liu, S.; Huang, Y.; Qing, F. L.; Xu, X. H. Org. Lett. 2018, 20, 5497.
[9] (a) Fleming, F. F. Nat. Prod. Rep. 1999, 16, 597.
(b) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
(c) May, E. L.; Jacobson, A. E.; Mattson, M. V.; Traynor, J. R.; Woods, J. H.; Harris, L. S.; Bowman, E. R.; Aceto, M. D. J. Med. Chem. 2000, 43, 5030.
(d) Fleming, F. F.; Zhang, Z. Y. Tetrahedron 2005, 61, 747.
(e) López, R.; Palomo, C. Angew. Chem., Int. Ed. 2015, 54, 13170.
[10] Yang, L.; Gao, P.; Duan, X. H.; Gu, Y. R.; Guo, L. N. Org. Lett. 2018, 20, 1034.
[11] (a) Martinez, C.; Alvarez R.; Aurrecoechea, J. M. Org. Lett. 2009, 11, 1083.
(b) Ackermann, L.; Lygin A. V.; Hofmann, N. Angew Chem., Int. Ed. 2011, 123, 6503.
(c) Zhou, B.; Yang Y.; Li, Y. Chem. Commun. 2012, 48, 5163.
(d) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew Chem., Int. Ed. 2009, 48, 5094.
[12] Yuan, J.; Fu, J.; Yin, J.; Dong, Z.; Xiao, Y.; Mao, P.; Qu, L. Org. Chem. Front. 2018, 5, 2820.
[13] (a) Zou, Y. Q.; Chen, J. R.; Liu, X. P.; Lu, L. Q.; Davis, R. L.; Jørgensen, K. A.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 784.
(b) Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.
(c) Zhang, L.; Yi, H.; Wang, J.; Lei, A. Green Chem. 2016, 18, 5122.
(d) Shi, Q.; Li, P.; Zhu, X.; Wang, L. Green Chem. 2016, 18, 4916.
(e) Li, X.; Fang, X.; Zhuang, S.; Liu, P.; Sun, P. Org. Lett. 2017, 19, 3580.
[14] Wei, W.; Wang, L.; Yue, H.; Bao, P.; Liu, W.; Hu, C.; Yang, D.; Wang, H. ACS Sustainable Chem. Eng. 2018, 6, 17252.
[15] (a) Zhou, W.; Qian, P.; Zhao, J.; Fang, H.; Han, J.; Pan, Y. Org. Lett. 2015, 17, 1160.
(b) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037.
(c) Zhang, S. Y.; Tu, Y. Q.; Fan, C. A.; Zhang, F. M.; Shi, L. Angew. Chem., Int. Ed. 2009, 48, 8761.
(d) Hu, W.; Sun, S.; Cheng, J. J. Org. Chem. 2016, 81, 4399.
(e) Meng, Y.; Guo, L. N.; Wang, H.; Duan, X. H. Chem. Commun. 2013, 49, 7540.
[16] Fu, J.; Yuan, J.; Zhang, Y.; Xiao, Y.; Mao, P.; Diao, X.; Qu, L Org. Chem. Front. 2018, 5, 3382.
[17] (a) Bar, G.; Parsons, A. F. Chem. Soc. Rev. 2003, 32, 251.
(b) Yamada, K.; Tomioka, K. Chem. Rev. 2008, 108, 2874.
(c) Slater, K.; Friestad, G. K. J. Org. Chem. 2015, 80, 6432.
[18] Zheng, D.; Studer, A. Org. Lett. 2019, 21, 325.
[19] (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(c) Nie, J.; Guo, H. C.; Cahard, D.; Ma, J. A. Chem. Rev. 2011, 111, 455.
[20] Wang, L.; Zhang, Y.; Li, F.; Hao, X.; Zhang, H. Y.; Zhao, J. Adv. Synth. Catal. 2018, 360, 3969.
[21] (a) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.
(b) Xu, Y.; Aoki, J.; Shimizu, K.; Umezu-Goto, M.; Hama, K.; Takanezawa, Y.; Yu, S.; Mills, G. B.; Arai, H.; Qian, L.; Prestwich, G. D. J. Med. Chem. 2005, 48, 3319.
(c) Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560.
[22] Hong, G.; Yuan, J.; Fu, J.; Pan, G.; Pan, Z.; Wang, Z.; Yang, L.; Xiao, Y.; Mao, P.; Zhang, X. Org. Chem. Front. 2019, 6, 1173.
[23] (a) Lawrence, D. S.; Copper, J. E.; Smith, C. D. J. Med. Chem. 2001, 44, 594.
(b) Wu, B.; Yang, Y.; Qin, X.; Zhang, S.; Jing, C.; Zhu, C.; Ma, B. ChemMedChem 2013, 8, 1913.
(c) Khattab, S. N.; Abdel Moneim, S. A. H.; Bekhit, A. A.; El Massry, A. M.; Hassan, S. Y.; El-Faham, A.; Ali Ahmed, H. E.; Amer, A. Eur. J. Med. Chem. 2015, 93, 308.
(d) Kobayashi, Y.; Suzuki, Y.; Ogata, T.; Kimachi, T.; Takemoto, Y. Tetrahedron Lett. 2014, 55, 3299.
[24] Hu, L.; Yuan, J.; Fu, J.; Zhang, T.; Gao, L.; Xiao, Y.; Mao, P.; Qu, L. Eur. J. Org. Chem. 2018, 2018, 4113.
[25] (a) Piras, S.; Loriga, M.; Carta, A.; Paglietti, G.; Costi, M. P.; Ferrari, S. J. Heterocycl. Chem. 2006, 43, 541.
(b) Kucybala, Z.; Paczkowski, J. J. Photochem. Photobiol. A 1999, 128, 135.
(c) Honda, H.; Shibusawa, Y.; Taniguchi, J.; Matsuda, H.; Kondod, M.; Kumasaka, K.; Miwa, T.; Notoya, Y.; Shindo, H. Vascul. Pharmacol. 2005, 42, 163.
(d) Azuma, K.; Suzuki, S.; Uchiyama, S.; Kajiro, T.; Santa, T.; Imai, K. Photochem. Photobiol. Sci. 2003, 2, 443.
[26] (a) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864.
(b) Rodriguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
[27] Zeng, X.; Liu, C.; Wang, X.; Zhang, J.; Wang, X.; Hu, Y. Org. Biomol. Chem. 2017, 15, 8929.
[28] (a) Chen, J.; Wan, M.; Hua, J.; Sun, Y.; Lv, Z.; Li, W.; Liu, L. Org. Biomol. Chem. 2015, 13, 11561.
(b) Chen, X.; Cui, X.; Wu, Y. Org. Lett. 2016, 18, 2411.
(c) Liu, J. Q.; Shen, X. Y.; Liu, Z. H.; Wang, X. S. Org. Biomol. Chem. 2017, 15, 6314.
(d) Jafarpour, F.; Abbasnia, M. J. Org. Chem. 2016, 81, 11982.
[29] Yuan, J. W.; Fu, J. H.; Liu, S. N.; Xiao, Y. M.; Mao, P.; Qu, L. B. Org. Biomol. Chem. 2018, 16, 3203.
[30] (a) Gao, Y.; Lu, W.; Liu, P.; Sun, P.; J. Org. Chem. 2016, 81, 2482.
(b) Li, X.; Fang, X.; Zhuang, S.; Liu, P.; Sun, P. Org. Lett. 2017, 19, 3580.
[31] Xie, L. Y.; Peng, S.; Fan, T. G.; Liu, Y. F.; Sun, M.; Jiang, L. L.; Wang, X. X.; Cao, Z.; He, W. M. Sci. China Chem. 2019, 62, 460.
[32] (a) Myers, M. R.; He, W.; Hanney, B.; Setzer, N.; Maguire, M. P.; Zulli, A.; Bilder, G.; Galzcinski, H.; Amin, D.; Needle, S.; Spada, A. P. Bioorg. Med. Chem. Lett. 2003, 13, 3091.
(b) He, W.; Myers, M. R.; Hanney, B.; Spada, A. P.; Bilder, G.; Galzcinski, H.; Amin, D.; Needle, S.; Page, K.; Jayyosi, Z.; Perrone, M. H. Bioorg. Med. Chem. Lett. 2003, 13, 3097.
(c) Aoki, K.; Koseki, J.; Takeda, S.; Aburada, M.; Miyamoto, K. Chem. Pharm. Bull. 2007, 55, 922.
[33] (a) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552.
(b) Lei, F.; Chen, Y. J.; Sui, Y.; Liu, L.; Wang, D. Synlett 2003, 1160.
[34] Han, Y. Y.; Wu, Z. J.; Zhang, X. M.; Yuan, W. C. Tetrahedron Lett. 2010, 51, 2023.
[35] (a) Hussain, S.; Pareen, S.; Hao, X.; Zhang, S.; Wang, W.; Qin, X.; Yang, Y.; Chen, X.; Zhu, S.; Zhu, C.; Ma, B. Eur. J. Med. Chem. 2014, 80, 383.
(b) Yin, K.; Zhang, R. Org. Lett. 2017, 19, 1530.
[36] (a) Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.
(b) Keshari, T.; Yadav, V. K.; Srivastava, V. P.; Yadav, L. D. S. Green Chem. 2014, 16, 3986.
(c) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev. 2016, 45, 2044.
[37] Wang, L.; Bao, P.; Liu, W.; Liu, S.; Hu, C.; Yue, H.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189.
[38] Jung, H. I.; Lee, J. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2018, 39, 1003.
[39] Carrër, A.; Brion, J. D.; Messaoudi, S.; Alami, M. Org. Lett. 2013, 15, 5606.
[40] (a) Demir, A. S.; Reis, O.; Emrullahoglu, M. J. Org. Chem. 2003, 68, 578.
(b) Dickschat, A.; Studer, A. Org. Lett. 2010, 12, 3972.
(c) Yan, G. B.; Yang, M. H.; Wu, X. M. Org. Biomol. Chem. 2013, 11, 7999.
(d) Yuan, J. W.; Yang, L. R.; Yin, Q. Y.; Mao, P.; Qu, L. B. RSC Adv. 2016, 6, 35936.
[41] Ramesh, B.; Reddy, C. R.; Kumar, G. G.; Reddy, B. S. Tetrahedron Lett. 2018, 59, 628.
[42] (a) Surry, D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
(b) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
(c) Callonnec, F. L.; Fouquet, E.; Felpin, F. X. Org. Lett. 2011, 13, 2646.
(d) Honraedt, A.; Callonnec, F. L.; Grognec, E. L.; Fernandez, V.; Felpin, F. X. J. Org. Chem. 2013, 78, 4604.
[43] Yuan, J.; Liu, S.; Qu, L. Adv. Synth. Catal. 2017, 359, 4197.
[44] Yin, K.; Zhang, R. Synlett 2018, 29, 597.
[45] (a) Yang, Y.; Li, R.; Zhao, Y.; Zhao, D.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 8734.
(b) Liu, C.; Wang, Q. Org. Lett. 2016, 18, 5118.
(c) Zhou, B.; Hou, W.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 16, 1322.
(d) Li, P.; Cheng, G.; Zhang, H.; Xu, X.; Gao, J.; Cui, X. J. Org. Chem. 2014, 79, 8156.
[46] Yin, K.; Zhang, R. Org. Lett. 2017, 19, 1530.
[47] (a) Hofmann, J.; Jasch, H.; Heinrich, M. R. J. Org. Chem. 2014, 79, 2314.
(b) Jiang, T.; Chen, S. Y.; Zhuang, H.; Zeng, R. S.; Zou, J. P. Tetrahedron Lett. 2014, 55, 4549.
[48] (a) Cui, J.; Jia, Q.; Feng, R.; Liu, S.; He, T.; Zhang, C. Org. Lett. 2014, 16, 1442.
(b) Shen, H.; Li, J.; Liu, Q.; Pan, J.; Huang, R.; Xiong, Y. J. Org. Chem. 2015, 80, 7212.
(c) Zheng, C.; Wang, Y.; Fan, R. Org. Lett. 2015, 17, 916.
[49] Paul, S.; Ha, J. H.; Park, G. E.; Lee, Y. R. Adv. Synth. Catal. 2017, 359, 1515.
[50] Paul, S.; Khanal, H. D.; Clinton, C. D.; Kim, S. H.; Lee, Y. R. Org. Chem. Front. 2019, 6, 231.
[51] (a) Ghadage, R. V.; Shirote, P. J. J. Chem. Pharm. Res. 2011, 3, 260.
(b) Galal, S. A.; Abdelsamie, A. S.; Tokuda, H.; Suzuki, N.; Lida, A.; ElHefnawi, M. M.; Ramadan, R. A.; Atta, M. H. E.; EI Diwani, H. I. Eur. J. Med. Chem. 2011, 46, 327.
(c) Rangisetty, J. B.; Gupta, C. N. V. H. B.; Prasad, A. L.; Srinivas, P.; Sridhar, N.; Parimoo, P.; Veeranjaneyulu, A. J. Pharm. Pharmacol. 2001, 53, 1409.
[52] Gulevskaya, A. V.; Burov, O. N.; Pozharskii, A. F.; Kletskii, M. E.; Korbukova, I. N. Tetrahedron 2008, 64, 696.
[53] Li, Y.; Gao, M.; Wang, L.; Cui, X. Org. Biomol. Chem. 2016, 14, 8428.
[54] Gupta, A.; Deshmukh, M. S.; Jain, N. J. Org. Chem. 2017, 82, 4784.
[55] Wei, W.; Wang, L.; Bao, P.; Shao, Y.; Yue, H.; Yang, D.; Yang, X.; Zhao, X.; Wang, H. Org. Lett. 2018, 20, 7125.
[56] (a) Jiang, Y. Y.; Xu, K.; Zeng, C. C. Chem. Rev. 2018, 118, 4485.
(b) Yoshida, J. I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702.
(c) Wu, Z. J.; Li, S. R.; Long, H.; Xu, H. Z. Chem. Commun. 2018, 54, 4601.
(d) Shrestha, A.; Lee, M.; Duan, A. L.; Sanford, M. S. Org. Lett. 2018, 20, 204.
[57] (a) Xu, F.; Li, Y. J.; Huang, C.; Xu, H. C. ACS Catal. 2018, 8, 3820.
(b) Qian, P.; Su, J. H.; Wang, Y. K.; Bi, M. X.; Zha, Z. G.; Wang, Z. Y. J. Org. Chem. 2017, 82, 6434.
(c) Sauermann, N.; Mei, R. H.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5090.
(d) Gao, X. L.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. W. J. Am. Chem. Soc. 2018, 140, 4195.
[58] Li, K. J.; Xu, K.; Liu, Y. G.; Zeng, C. C.; Sun, B. G. Adv. Synth. Catal. 2019, 361, 1033.
[59] (a) Peng, J.; Xie, Z.; Chen, M.; Wang, J.; Zhu, Q. Org. Lett. 2014, 16, 4702.
(b) Pan, C.; Jin, N.; Zhang, H.; Han, J.; Zhu, C. J. Org. Chem. 2014, 79, 9427.
(c) Zhang, Z.; Kumar, R. K.; Li, G.; Wu, D.; Bi, X. Org. Lett. 2015, 17, 6190.
(d) Xie, Z.; Peng, J.; Zhu, Q. Org. Chem. Front. 2016, 3, 82.
(e) Wu, Z.; Xu, P.; Zhou, N.; Duan, Y.; Zhang, M.; Zhu, C. Chem. Commun. 2017, 53, 1045.
(f) Kong, X.; Lin, L.; Xu, B. Adv. Synth. Catal. 2018, 360, 2801.
[60] Yang, Q.; Yang, Z.; Tan, Y.; Zhao, J.; Sun, Q.; Zhang, H. Y.; Zhang, Y. Adv. Synth. Catal. 2019, 361, 1662.
[61] (a) Dudash Jr, J.; Zhang, Y.; Moore, J. B.; Look, R.; Liang, Y.; Beavers, M. P.; Conway, B. R.; Rybczynski, P. J.; Demarest, K. T. Bioorg. Med. Chem. Lett. 2005, 15, 4790.
(b) Fleischhauer, J.; Beckert, R.; Juttke, Y.; Hornig, D.; Gunther, W.; Birckner, E.; Grummt, U. W.; Goerls, H. Chem. Eur. J. 2009, 15, 12799.
[62] (a) Rach, S. F.; Kühn, F. E. Chem. Rev. 2009, 109, 2061.
(b) Zhang, Y.; Pan, L.; Zou, Y.; Xu, X.; Liu, Q. Chem. Commun. 2014, 50, 14334.
(c) Xu, X.; Zhang, L.; Liu, X.; Pan, L.; Liu, Q. Angew. Chem., Int. Ed. 2013, 52, 9271.
(d) Hu, Z.; Dong, J.; Men, Y.; Lin, Z.; Cai, J.; Xu, X. Angew. Chem., Int. Ed. 2017, 56, 1805.
[63] Yuan, J.; Liu, S.; Xiao, Y.; Mao, P.; Yang, L.; Qu, L. Org. Biomol. Chem. 2019, 17, 876.
[64] Yuan, J.; Zhu, J.; Fu, J.; Yang, L.; Xiao, Y.; Mao, P.; Du, X.; Qu, L. Org. Chem. Front. 2019, 6, 925.
[65] Guo, T.; Wang, C. C.; Fu, X. H.; Liu, Y.; Zhang, P. K. Org. Biomol. Chem. 2019, 17, 3333.
[66] (a) Dang, Q.; Liu, Y.; Cashion, D. K.; Kasibhatla, S. R.; Jiang, T.; Taplin, F.; Jacintho, J. D.; Li, H.; Sun, Z.; Fan, Y.; Re, J. D.; Tian, F.; Li, W.; Gibson, T.; Lemus, R.; Poelje, P. D. J. Med. Chem. 2011, 54, 153.
(b) Roush, R. F.; Nolan, E. M.; Löhr, F.; Walsh, C. T. J. Am. Chem. Soc. 2008, 130, 3603.
(c) Jeon, S. O.; Lee, J. Y. J. Mater. Chem. 2012, 22, 7239.
[67] (a) Zhang, B.; Daniliuc, C. G.; Studer, A. Org. Lett. 2014, 16, 250.
(b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(c) Zhang, X.; Chen, K.; Shi, Z. J. Chem. Sci. 2014, 5, 2146.
[68] Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Chem. Commun. 2016, 52, 2846.
[69] (a) Meggers, E. Chem. Commun. 2015, 51, 3290.
(b) Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426.
(c) Ravelli, D.; Protri, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
[70] Kim, Y.; Kim, D. Y. Tetrahedron Lett. 2018, 59, 2443.
[71] Nishio, T. J. Org. Chem. 1984, 49, 827.
[72] Carrër, A.; Brion, J. D.; Alami, M.; Messaoudi, S. Adv. Synth. Catal. 2014, 356, 3821.
[73] Yang, Q.; Zhang, Y.; Sun, Q.; Shang, K.; Zhang, H. Y.; Zhao, J. Adv. Synth. Catal. 2018, 360, 4509.

文章导航

/