研究论文

Pd(OAc)2/N-氯-N-氟苯磺酰胺体系下乙酰苯胺的氯化反应

  • 朱晔 ,
  • 黄金文 ,
  • 杨先金
展开
  • a 华东理工大学精细化工研究所 结构可控先进功能材料及其制备教育部重点实验室 上海 200237;
    b 上海应用技术大学化学与环境工程学院 上海 201418;
    c 中国科学院上海有机化学研究所 有机氟化学重点实验室 上海 200032

收稿日期: 2019-03-20

  修回日期: 2019-04-25

  网络出版日期: 2019-05-10

基金资助

国家自然科学基金(No.21372077)和低品位磷矿高效利用国家重点实验室(No.WFKF2017-04)资助项目.

Chlorination of Anilide by Pd(OAc)2/N-Chloro-N-fluorobenzene- sulfonylamide

  • Zhu Ye ,
  • Huang Jinwen ,
  • Yang Xianjin
Expand
  • a Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237;
    b School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418;
    c Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032

Received date: 2019-03-20

  Revised date: 2019-04-25

  Online published: 2019-05-10

Supported by

Project supported by the National Natural Science Foundation of China (No. 21372077) and the State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources (No. WFKF2017-04).

摘要

报道了一种以N-氟-N-氯苯磺酰胺(CFBSA)同时作为氯源、氧化剂和促进剂的钯催化乙酰苯胺氯化方法.反应后的副产物N-氟苯磺酰胺在Pd(OAc)2存在下分解,促进了反应进程.表明钯催化下酰胺键导向的碳氢活化可以得到一系列邻位氯化的产物,产率在28%~82%.

本文引用格式

朱晔 , 黄金文 , 杨先金 . Pd(OAc)2/N-氯-N-氟苯磺酰胺体系下乙酰苯胺的氯化反应[J]. 有机化学, 2019 , 39(6) : 1665 -1671 . DOI: 10.6023/cjoc201903037

Abstract

A mild method for palladium-catalyzed halogenation of acetanilide with N-chloro-N-fluorobenzenesulfonylamide (CFBSA) as a chlorinating reagent, oxidant, and novel promoting reagent was achieved. The decomposition of byproduct N-fluoroben-zenesulfonylamine in the presence of Pd(OAc)2 could accelerate the process of chlorination. Preliminary mechanism investigation showed that Pd catalyzed anilide directed C-H activation lead to the ortho chlorination selectivity. A series of ortho-chlorinated anilides were obtained in 28%~82% yields.

参考文献

[1] (a) Kinsinger, T.; Kazmaier, U. Org. Lett. 2018, 20, 7726.
(b) Nasrollahzadeh, M.; Issaabadi, Z.; Tohidi, M. M.; Sajadi, S. M. Chem. Rev. 2018, 18, 165.
(c) Ding, H.; Li, J.; Guo, Q.; Xiao, Y. Chin. J. Org. Chem. 2017, 37, 3112.
(d) Wang, J.; Li, F.; Yu, X.; Liu, L.; Ding, J.; Xie, P.; Wang, J. Chin. J. Org. Chem. 2018, 38, 1638.
(e) Davie, E. A. C.; Mennen, S. M.; Xu, Y.; Miller, S. J. Chem. Rev. 2007, 107, 5759.
[2] (a) Seifert, S.; Schmidt, D.; Shoyama, K.; Wuerthner, F. Angew. Chem., Int. Ed. 2017, 56, 7595.
(b) Li, H.; Shi, Z.-J. Prog. Chem. 2010, 22, 1414.
(c) Liang, J.-Y.; Shen, S.-J.; Xu, X.-H.; Fu, Y.-L. Org. Lett. 2018, 20, 6627.
(d) Manikandan, T. S.; Ramesh, R.; Semeril, D. Organometallics 2019, 38, 319.
(e) Wang, Y.; Zeng, J.; Cui, X. Chin. J. Org. Chem. 2010, 30, 181.
[3] (a) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824.
(b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
[4] (a) Dilauro, G.; Quivelli, A. F.; Vitale, P.; Capriati, V.; Perna, F. M. Angew. Chem., Int. Ed. 2019, 58, 1799.
(b) Youn, S. W.; Kim, Y. H.; Jo, Y. H. Adv. Synth. Catal. 2019, 361, 462.
[5] (a) Mei, C.; Lu, W. J. Org. Chem. 2018, 83, 4812.
(b) Wang, G.-W.; Yuan, T.-T.; Wu, X.-L. J. Org. Chem. 2008, 73, 4717.
(c) Karthikeyan, J.; Cheng, C.-H. Angew. Chem., Int. Ed. 2011, 50, 9880.
[6] (a) Gao, X.-A.; Yan, R.-L.; Wang, X.-X.; Yan, H.; Li, J.; Guo, H.; Huang, G.-S. J. Org. Chem. 2012, 77, 7700.
(b) Xing, X.; O'Connor, N. R.; Stoltz, B. M. Angew. Chem., Int. Ed. 2015, 54, 11186.
(c) Saito, F.; Aiso, H.; Kochi, T.; Kakiuchi, F. Organometallics 2014, 33, 6704.
[7] (a) Lu, O.; Huang, J.; Li, J.; Qi, C.; Wu, W.; Jiang, H. Chem. Commun. 2017, 53, 10422.
(b) Khatun, N.; Modi, A.; Ali, W.; Patel, B. K. J. Org. Chem. 2015, 80, 9662.
[8] Ma, C.; Zhao, C.-Q.; Li, Y.-Q.; Zhang, L.-P.; Xu, X.-T.; Zhang, K.; Mei, T.-S. Chem. Commun. 2017, 53, 12189.
[9] Wang, X.; Leow, D.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 13864.
[10] (a) Dong, Y.; Liu, G. J. Org. Chem. 2017, 82, 3864.
(b) Jin, L.; Zeng, X.; Li, S.; Hong, X.; Qiu, G.; Liu, P. Chem. Commun. 2017, 53, 3986.
[11] (a) Chen, C.-H.; Luo, Y.-X.; Fu, L.; Chen, P.-H.; Lan, Y.; Liu, G.-S. J. Am. Chem. Soc. 2018, 140, 1207.
(b) Chen, C.-H.; Chen, P.-H.; Liu, G.-S. J. Am. Chem. Soc. 2015, 137, 15648.
[12] Liu, R.; Lu, Z.-H.; Hu, X.-H.; Li, J.-L.; Yang, X.-J. Org. Lett. 2015, 17, 1489.
[13] Lu, Z.-H.; Li, Q.-W.; Tang, M.-H.; Jiang, P.-P.; Zheng, H.; Yang, X.-J. Chem. Commun. 2015, 51, 14852.
[14] (a) Kim, K.; Jung, Y.; Lee, S.; Kim, M., Shin, D.; Byun, H.; Cho, S. J.; Song, H.; Kim, H. Angew. Chem., Int. Ed. 2017, 56, 6952.
(b) Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, R. L. Angew. Chem., Int. Ed. 2011, 50, 5524.
[15] Wan, X.-B.; Ma, Z.-X.; Li, B.-J.; Zhang, K.-Y.; Cao, S.-K.; Zhang, S.-W.; Shi, Z.-J. J. Am. Chem. Soc. 2006, 128, 7416.
[16] Lengyel, I.; Cesare, V.; Stephani, R. Synth. Commun. 1998, 28, 1891.
[17] Xiong, X. D.; Yeung, Y. Y. Angew. Chem., Int. Ed. 2016, 55, 16101.
[18] Hering, T.; Muehldorf, B.; Wolf, R.; Koenig, B. Angew. Chem., Int. Ed. 2016, 55, 5342.
[19] Bedford, R. B.; Engelhart, J. U.; Haddow, M. F.; Mitchell, C. J.; Webster, R. L. Dalton Trans. 2010, 39, 10464.
[20] Singh, H.; Sen, C.; Sahoo, T.; Ghosh, S. C. Eur. J. Org. Chem. 2018, 4748.
[21] Pu, X.-Q.; Zhao, H.-Y.; Lu, Z.-H.; He, X.-P.; Yang, X.-J. Eur. J. Org. Chem. 2016, 4526.
[22] Pu, X.-Q.; Li, Q.-W.; Lu, Z.-H.; Yang, X.-J. Eur. J. Org. Chem., 2016, 5937.
[23] Zhao, H.-Y.; Pu, X.-Q.; Yang, X.-J. Chin. J. Chem. 2017, 35, 1417.

文章导航

/