多聚磷酸催化的苄基芳基醚合成苄基酚的重排反应
收稿日期: 2019-01-26
修回日期: 2019-04-30
网络出版日期: 2019-05-15
基金资助
江苏省高等学校自然科学研究面上项目(Nos.18KJD350002,17KJB350012)、2018年江苏高校"青蓝工程"优秀青年骨干教师、2018年江苏省高等学校大学生创新创业训练计划(No.201812106004Y)、2017年泰州市科技支撑项目(No.TS201711)、泰州职业技术学院博硕基金(No.TZYBS-17-1)和泰州职业技术学院科研(No.TZYKY-18-28)资助项目.
Synthesis of Benzyl Phenol from Benzyl Aryl Ether by Polyphosphoric Acid-Catalyzed Benzyl Rearrangement
Received date: 2019-01-26
Revised date: 2019-04-30
Online published: 2019-05-15
Supported by
Project supported by the Natural Science Research General Project of Jiangsu Higher Education Institutions (Nos. 18KJD350002, 17KJB350012), the Excellent Young Backbone Teachers of "Blue Project" in Jiangsu Universities in 2018, the College Students' Innovation and Entrepreneurship Training Program in Jiangsu Province in 2018 (No. 201812106004Y), the Science and Technology Support Program of Taizhou (No. TS201711), the Doctoral and Master's Fund of Taizhou Polytechnic College (No. TZYBS-17-1) and the Research Project of Taizhou Polytechnic College (No. TZYKY-18-28).
刘竺云 , 徐娟娟 , 凌斌 , 厉彦翔 , 刘广聪 , 王立中 , 周国春 . 多聚磷酸催化的苄基芳基醚合成苄基酚的重排反应[J]. 有机化学, 2019 , 39(9) : 2515 -2524 . DOI: 10.6023/cjoc201901042
The rearrangement activity of benzyl aryl ether catalyzed by polyphosphoric acid (PPA) was systematically investigated. Optimal structural tuning of substitutions of electron withdrawing group (EWG) and electron donating group (EDG) at phenolic moiety or benzyl moiety benefits the rearrangement and the regio-selectivity of the rearrangement obeyed the substitution directing rule at the aromatic ring. This readily available rearrangement method is of practical interest for the benzylation of diverse aromatic phenols.
[1] Tyman, J. H. P. Synthetic and Natural Phenols, Elsevier, New York, 1996.
[2] Representive examples:(a) Olah, G. A. Friedel-Crafts and Related Reactions, Wiley, New York, 1963.
(b) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem. Int. Ed. 2004, 43, 550.
(c) Guo, X.-K.; Zhao, D.-Y.; Li, J.-H.; Zhang, X.-G.; Deng, C.-L.; Tang, R.-Y. Synlett 2012, 23, 627.
[3] Representive examples:(a) Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160.
(b) Verrier, C.; Hoarau, C.; Marsais, F. Org. Biomol. Chem. 2009, 7, 647.
(c) Ackermann, L.; Novák, P. Org. Lett. 2009, 11, 4966.
(d) Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. J. Am. Chem. Soc. 2003, 125, 2020.
(e) Zhang, C. Y.; Gao, X. Q.; Zhang, J. H.; Peng, X. J. Chin. Chem. Lett. 2009, 20, 913.
[4] Hartmann, C.; Gattermann, L. Ber. Dtsch. Chem. Ges. 1892, 25, 3531.
[5] Tarbell, D. S.; Petropoulos, J. C. J. Am. Chem. Soc. 1952, 74, 244.
[6] (a) Luzzio, F. A.; Chen, J. J. Org. Chem. 2009, 74, 5629.
(b) Kraus, G. A. Chaudhary, D. Tetrahedron Lett. 2012, 53, 7072.
(c) Yoshimi, Y.; Maeda, H. Hatanaka, M.; Mizuno, K. Tetrahedron 2004, 60, 9425.
(d) Sagrera, G.; Seoane, G. Synthesis 2009, 4190.
[7] Schäfer; G.; Bode, J. W. Angew. Chem., Int. Ed. 2011, 50, 10913.
[8] Champagne; P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F. Angew. Chem., Int. Ed. 2014, 53, 13835.
[9] Vukovi?, V. D.; Richmond, E.; Wolf, E.; Moran, J. Angew. Chem., Int. Ed. 2017, 56, 3085.
[10] Bering, L.; Jeyakumar, K.; Antonchick, A. P. Org. Lett. 2018, 20, 3911.
[11] (a) Kuwano, R.; Kusano, H. Org. Lett. 2008, 10, 1979.
(b) Zhou, L.; Wang, W.; Zuo, L.; Yao, S.; Wang, W.; Duan, W. Tetrahedron Lett. 2008, 49, 4876.
[12] (a) Prokipcak, J. M.; Breckles, T. H. Can. J. Chem. 1971, 49, 914.
(b) Moghaddam, F. M.; Hoor, A. A.; Dekamin, M. G. J. Sulfur Chem. 2004, 25, 125.
(c) Leeson, P. D.; Emmett, J. C.; Underwood, A. H.; Ellis, D. EP 188351, 1986.
[13] (a) Niu, J.; Zhou, H.; Li, Z.; Xu, J.; Hu, S. J. Org. Chem. 2008, 73, 7814.
(b) Bhure, M. H.; Rode, C. V.; Chikate, R. C.; Patwardhan, N.; Patil, S. Catal. Commun. 2007, 8, 139.
[14] (a) Dai, H.-L.; Liu, W.-Q.; Xu, H.; Yang, L.-M.; Lv, M.; Zheng, Y. T. Chem. Pharm. Bull. 2009, 57, 84.
(b) Bartoli, G.; Dalpozzo, R.; Nino, A. D.; Maiuolo, L.; Nardi, M.; Procopio, A.; Tagarelli, A. Eur. J. Org. Chem. 2004, 39, 2176.
[15] (a) Ohkubo, M.; Mochizuki, S.; Sano, T.; Kawaguchi, Y.; Okamoto, S. Org. Lett. 2007, 9, 773.
(b) Sajiki, H.; Hirota, K. Chem. Pharm. Bull. 2003, 51, 320.
(c) Paula, S.; Abell, J.; Deye, J.; Elam, C.; Lape, M.; Purnell, J. Ratliff, R.; Sebastian, K.; Zultowsky, J.; Kempton, R. J. Bioorg. Med. Chem. 2009, 17, 6613.
[16] Chakraborti, A. K.; Chankeshwara, S. V. J. Org. Chem. 2009, 74, 1367.
[17] Spurg, A.; Waldvogel, S. R. Eur. J. Org. Chem. 2008, 2, 337.
[18] (a) Venkataramanan, B.; James, W. L. G.; Vittal, J. J.; Suresh, V. Cryst. Growth Des. 2004, 4, 553.
(b) Marx, J. N.; Argyle, J. C.; Norman, L. R. J. Am. Chem. Soc. 1974, 96, 2121.
(c) Baggaley, K. H.; Fears, R.; Hindley, R. H.; Morgan, B.; Murrell, E.; Thorne, D. E. J. Med. Chem. 1977, 20, 1388.
[19] (a) Zhang, G.; Ren, X.; Chen, J.; Hu, M.; Cheng, J. Org. Lett. 2011, 13, 5004.
(b) Tao, C. Z.; Liu, W. W.; Sun, J. Y. Chin. Chem. Lett. 2009, 20, 1170.
[20] Li, Y.; Chen, T.; Wang, H.; Zhang, R.; Jin, K.; Wang, X.; Duan, C. Synlett 2011, 1713.
[21] Kern, N.; Dombray, T.; Blanc, A.; Weibel, J.-M.; Pale, P. J. Org. Chem. 2012, 77, 9227.
[22] (a) Larsson, J. P. WO 02/09257, 2002.
(b) Robinson, R.; Smith, J. C. J. Chem. Soc. 1926, 392.
[23] (a) Ploypradith, P.; Cheryklin, P.; Niyomtham, N.; Bertoni, D. R.; Ruchirawat, S. Org. Lett. 2007, 9, 2637.
(b) Petchmanee, T.; Ploypradith, P.; Ruchirawat, S. J. Org. Chem. 2006, 71, 2892.
[24] (a) Boger, D. L.; Coleman, R. S. J. Org. Chem. 1986, 51, 5436.
(b) Kissau, L.; Stahl, P.; Mazitschek, R.; Giannis, A.; Waldmann, H. J. Med. Chem. 2003, 46, 2917.
(c) Hermite, N. L'; Giraud, A.; Provot, O.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. Tetrahedron 2006, 62, 11994.
[25] (a) Ramachary, D. R.; Kishor, M. J. Org. Chem. 2007, 72, 5056.
(b) Minami, N.; Kijima, S. Chem. Pharm. Bull. 1979, 27, 1490.
[26] (a) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2010, 132, 11592.
(b) Saito, K.; Onizawa, Y.; Kusama, H.; Iwasawa, N. Chem. Eur. J. 2010, 16, 4716.
(c) Huston, R. C.; Swartout, A. A.; Wardwell, G. K. J. Am. Chem. Soc. 1930, 52, 4484.
[27] Batt Maynard, D. G.; Petraitis, J. J.; Shaw, J. E.; Galbraith, W.; Harris, R. R. J. Med. Chem. 1990, 33, 360.
[28] (a) Sano, M.; Iwakura, K. JP 02196686, 1990.
(b) Batt, D. G.; Jones, D. G.; Greca, S. L. J. Org. Chem. 1991, 56, 6704.
[29] (a) Kim, J. D.; Han, G.; Zee, O. P.; Jung, Y. H. Tetrahedron Lett. 2003, 44, 733.
(b) Paul, N. K.; Dietrich, L.; Jha, A. Synth. Commun. 2007, 37, 877.
[30] (a) Trivedi, R.; Tunge, J. A. Org Lett. 2009, 11, 5650.
(b) Punna, S.; Meunier, S.; Finn, M. G. Org. Lett. 2004, 6, 2777.
[31] Orrests, J.; Tucker, S. H.; Whalley, M. J. Chem. Soc. 1951, 303.
[32] Kesharwani, T.; Larock, R. C. Tetrahedron 2008, 64, 6090.
[33] (a) Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694.
(b) Haldar, S.; Koner, S. J. Org. Chem. 2010, 75, 6005.
[34] (a) Mincione, E.; Bovicelli, P. Gazz. Chim. Ital. 1982, 112, 437.
(b) Yusupov, Y.; Abdurasuleva, A. R.; Rezhametov, T.; Mama-dzhanov, A. Uzb. Khim. Zh. 1980, 26.
/
〈 |
|
〉 |