八元环醚化合物合成方法研究进展
收稿日期: 2019-03-28
修回日期: 2019-04-29
网络出版日期: 2019-05-15
基金资助
国家重点研发计划(No.2016YFD0201200)和南开大学中央高校基本科研业务费专项资金(No.63191205)资助项目.
Progress in Synthesis of Eight-Membered Cyclic Ethers
Received date: 2019-03-28
Revised date: 2019-04-29
Online published: 2019-05-15
Supported by
Project supported by the National Key Research and Development Program of China (No. 2016YFD0201200) and the Fundamental Research Funds for the Central Universities, Nankai University (No. 63191205).
程诚 , 孙孝斌 , 苗志伟 . 八元环醚化合物合成方法研究进展[J]. 有机化学, 2019 , 39(8) : 2148 -2156 . DOI: 10.6023/cjoc201903068
Eight membered cyclic ether compounds are common structural motifs in natural products and bioactive molecules. The efficient synthesis of eight membered ethers has attracted wide attention for organic chemists. Compared with five-to seven-membered cyclic ethers, the synthesis of eight membered cyclic ethers is more challenging. In this paper, the synthetic methods for eight membered cyclic ethers by transition metal catalysis, ring expansion, retro-Claisen rearrangement, ring-closing metathesis, intramolecular amide enol alkylation and organic catalyzed tandem cyclization are reviewed.
[1] Zhou, Z. F.; Menna, M.; Cai, Y. S.; Guo, Y. W. Chem. Rev. 2014, 115, 1543.
[2] (a) Gonzaiez, A. G.; Martín, J. D.; Martín, V. S.; Norte, M.; Peiez, R.; Ruano, J. Z.; Drexler, S. A.; Clardy, J. Tetrahedron 1982, 38, 1009.
(b) Noite, M.; Gonzalez, A. G.; Cataldo, F.; Rodríguez, M. L.; Brito, I. Tetrahedron 1991, 47, 9411.
(c) Kim, H.; Choi, W. J.; Jung, J.; Kim, S.; Kim, D. J. Am. Chem. Soc. 2003, 125, 10238.
[3] (a) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 6, 1091.
(b) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron 1968, 24, 4193.
(c) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653.
(c) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 6, 109.
[4] Fukuzawa, A.; Takasugi, Y.; Murai, A. Tetrahedron Lett. 1991, 32, 5597.
[5] Suzuki, M.; Takahashi, Y.; Matsuo, Y.; Masuda, M. Phytochemistry 1996, 41, 1101.
[6] (a) Singh, S. B.; Zink, D. L.; Quamina, D. S.; Pelaez, F.; Teran, A.; Felock, P.; Hazuda, D. J. Tetrahedron Lett. 2002, 43, 2351.
(b) Ramana, C. V.; Reddy, C. N.; Gonnade, R. G. Chem. Commun. 2008, 3151.
(c) Tadross, P. M.; Bugga, P.; Stoltz, B. M. Org. Biomol. Chem. 2011, 9, 5354.
(d) Foot, J. S.; Giblin, G. M. P.; Taylor, R. J. K. Org. Lett. 2003, 5, 4441.
[7] (a) Macías, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G.; Fronczek, F. R. Tetrahedron Lett. 1993, 34, 1999.
(b) Macías, F. A.; Molinillo, J. M. G.; Varela, R. M.; Torres, A.; Fronczek, F. R. J. Org. Chem. 1994, 59, 8261.
(c) Macías, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G. J. Nat. Prod. 1999, 62, 1636.
[8] (a) Burton, J. W.; Clark, J. S.; Derrer, S.; Stork, T. C.; Bendall, J. G.; Holmes, A. B. J. Am. Chem. Soc. 1997, 119, 7483.
(b) Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33, 4345.
(c) Bratz, M.; Bullock, W. H.; Overman, L. E.; Takemoto, T. J. Am. Chem. Soc. 1995, 117, 5958.
(d) Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J. A. Synlett 1996, 983.
(e) Krüger, J.; Hoffmann, R. W. J. Am. Chem. Soc. 1997, 119, 7499.
(f) Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J. A. J. Org. Chem. 1998, 63, 9728.
[9] Mandal, S. K.; Roy, S. C. Tetrahedron Lett. 2006, 47, 1599.
[10] Coulter, M. M.; Dornan, P. K.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 6932.
[11] Zhao, C. G.; Xie, X. G.; Duan, S. S.; Li, H. L.; Fang, R.; She, X. G. Angew. Chem., Int. Ed. 2014, 53, 10789.
[12] Corrie, T. J. A.; Ball, L. T.; Russell, C. A.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2017, 139, 245.
[13] Liu, R. X.; Wang, Q.; Wei, Y.; Shi, M. Chem. Commun. 2018, 54, 1225.
[14] Snyder, S. A.; Treitler, D. S.; Brucks, A. P.; Sattler, W. J. Am. Chem. Soc. 2011, 133, 15898.
[15] Liao, H. H.; Liu, R. S. Chem. Commun. 2011, 47, 1339.
[16] Cao, T. X.; Kong, Y.; Luo, K.; Chen, L. F.; Zhu, S. F. Angew. Chem., Int. Ed. 2018, 57, 8707.
[17] Boeckman, R. K.; Shair, M. D.; Vargas, J. R.; Stolz. L. A. J. Org. Chem. 1993, 58, 1295.
[18] Boeckman, R. K.; Reeder, M. R. J. Org. Chem. 1997, 62, 6456.
[19] Boeckman, R. K.; Zhang, J.; Reeder, M. R. Org. Lett. 2002, 4, 3891.
[20] Li, Z. B.; Wang, F. P.; Chen, D. L. Chin. J. Org. Chem. 2000, 20, 282(in Chinese). (李正邦,王锋鹏,陈东林,有机化学, 2000, 20, 282.)
[21] Miller, S. J.; Kim, S. H.; Chen, Z. R.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 2108.
[22] Linderman, R. J.; Siedlecki, J.; ONeill, S. A.; Sun, H. J. Am. Chem. Soc. 1997, 119, 6919.
[23] Crimmins, M. T.; Tabet, E. A. J. Am. Chem. Soc. 2000, 122, 5473.
[24] Mori, M.; Kitamura, T.; Sakakibara, N.; Sato, Y. Org. Lett. 2000, 2, 543.
[25] Ortega, N.; Martin, T.; Martin, V. S. Org. Lett. 2006, 8, 871.
[26] Baek, S.; Jo, H.; Kim, H.; Kim, H.; Kim, S.; Kim, D. Org. Lett. 2005, 7, 75.
[27] Kim, G.; Sohn, T.; Kim, D.; Paton. R. S. Angew. Chem., Int. Ed. 2014, 53, 272.
[28] Liang, L.; Li, E. Q.; Dong, X. L.; Huang, Y. Org. Lett. 2015, 17, 4914.
[29] Cheng, C.; Zhang, J. Y.; Wang, X.; Miao, Z. W. J. Org. Chem. 2018, 83, 5450.
/
| 〈 |
|
〉 |