综述与进展

八元环醚化合物合成方法研究进展

  • 程诚 ,
  • 孙孝斌 ,
  • 苗志伟
展开
  • a 南开大学化学学院 元素有机化学国家重点实验室 天津 300071;
    b 天津化学化工协同创新中心 天津 300071

收稿日期: 2019-03-28

  修回日期: 2019-04-29

  网络出版日期: 2019-05-15

基金资助

国家重点研发计划(No.2016YFD0201200)和南开大学中央高校基本科研业务费专项资金(No.63191205)资助项目.

Progress in Synthesis of Eight-Membered Cyclic Ethers

  • Cheng Cheng ,
  • Sun Xiaobin ,
  • Miao Zhiwei
Expand
  • a Research Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071;
    b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071

Received date: 2019-03-28

  Revised date: 2019-04-29

  Online published: 2019-05-15

Supported by

Project supported by the National Key Research and Development Program of China (No. 2016YFD0201200) and the Fundamental Research Funds for the Central Universities, Nankai University (No. 63191205).

摘要

八元环醚化合物在天然产物和生物活性分子中广泛存在,实现该类化合物的高效合成一直是有机化学家的关注热点.与五至七元环化合物合成方法相比,八元环醚化合物的合成更具挑战性.综述了近年来利用过渡金属催化法、环扩张法、Claisen重排法、烯烃复分解关环法,分子内酰胺烯醇烷基化法以及有机小分子催化串联环化法合成八元环醚类化合物的研究进展.

本文引用格式

程诚 , 孙孝斌 , 苗志伟 . 八元环醚化合物合成方法研究进展[J]. 有机化学, 2019 , 39(8) : 2148 -2156 . DOI: 10.6023/cjoc201903068

Abstract

Eight membered cyclic ether compounds are common structural motifs in natural products and bioactive molecules. The efficient synthesis of eight membered ethers has attracted wide attention for organic chemists. Compared with five-to seven-membered cyclic ethers, the synthesis of eight membered cyclic ethers is more challenging. In this paper, the synthetic methods for eight membered cyclic ethers by transition metal catalysis, ring expansion, retro-Claisen rearrangement, ring-closing metathesis, intramolecular amide enol alkylation and organic catalyzed tandem cyclization are reviewed.

参考文献

[1] Zhou, Z. F.; Menna, M.; Cai, Y. S.; Guo, Y. W. Chem. Rev. 2014, 115, 1543.
[2] (a) Gonzaiez, A. G.; Martín, J. D.; Martín, V. S.; Norte, M.; Peiez, R.; Ruano, J. Z.; Drexler, S. A.; Clardy, J. Tetrahedron 1982, 38, 1009.
(b) Noite, M.; Gonzalez, A. G.; Cataldo, F.; Rodríguez, M. L.; Brito, I. Tetrahedron 1991, 47, 9411.
(c) Kim, H.; Choi, W. J.; Jung, J.; Kim, S.; Kim, D. J. Am. Chem. Soc. 2003, 125, 10238.
[3] (a) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 6, 1091.
(b) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron 1968, 24, 4193.
(c) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653.
(c) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 6, 109.
[4] Fukuzawa, A.; Takasugi, Y.; Murai, A. Tetrahedron Lett. 1991, 32, 5597.
[5] Suzuki, M.; Takahashi, Y.; Matsuo, Y.; Masuda, M. Phytochemistry 1996, 41, 1101.
[6] (a) Singh, S. B.; Zink, D. L.; Quamina, D. S.; Pelaez, F.; Teran, A.; Felock, P.; Hazuda, D. J. Tetrahedron Lett. 2002, 43, 2351.
(b) Ramana, C. V.; Reddy, C. N.; Gonnade, R. G. Chem. Commun. 2008, 3151.
(c) Tadross, P. M.; Bugga, P.; Stoltz, B. M. Org. Biomol. Chem. 2011, 9, 5354.
(d) Foot, J. S.; Giblin, G. M. P.; Taylor, R. J. K. Org. Lett. 2003, 5, 4441.
[7] (a) Macías, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G.; Fronczek, F. R. Tetrahedron Lett. 1993, 34, 1999.
(b) Macías, F. A.; Molinillo, J. M. G.; Varela, R. M.; Torres, A.; Fronczek, F. R. J. Org. Chem. 1994, 59, 8261.
(c) Macías, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G. J. Nat. Prod. 1999, 62, 1636.
[8] (a) Burton, J. W.; Clark, J. S.; Derrer, S.; Stork, T. C.; Bendall, J. G.; Holmes, A. B. J. Am. Chem. Soc. 1997, 119, 7483.
(b) Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33, 4345.
(c) Bratz, M.; Bullock, W. H.; Overman, L. E.; Takemoto, T. J. Am. Chem. Soc. 1995, 117, 5958.
(d) Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J. A. Synlett 1996, 983.
(e) Krüger, J.; Hoffmann, R. W. J. Am. Chem. Soc. 1997, 119, 7499.
(f) Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J. A. J. Org. Chem. 1998, 63, 9728.
[9] Mandal, S. K.; Roy, S. C. Tetrahedron Lett. 2006, 47, 1599.
[10] Coulter, M. M.; Dornan, P. K.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 6932.
[11] Zhao, C. G.; Xie, X. G.; Duan, S. S.; Li, H. L.; Fang, R.; She, X. G. Angew. Chem., Int. Ed. 2014, 53, 10789.
[12] Corrie, T. J. A.; Ball, L. T.; Russell, C. A.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2017, 139, 245.
[13] Liu, R. X.; Wang, Q.; Wei, Y.; Shi, M. Chem. Commun. 2018, 54, 1225.
[14] Snyder, S. A.; Treitler, D. S.; Brucks, A. P.; Sattler, W. J. Am. Chem. Soc. 2011, 133, 15898.
[15] Liao, H. H.; Liu, R. S. Chem. Commun. 2011, 47, 1339.
[16] Cao, T. X.; Kong, Y.; Luo, K.; Chen, L. F.; Zhu, S. F. Angew. Chem., Int. Ed. 2018, 57, 8707.
[17] Boeckman, R. K.; Shair, M. D.; Vargas, J. R.; Stolz. L. A. J. Org. Chem. 1993, 58, 1295.
[18] Boeckman, R. K.; Reeder, M. R. J. Org. Chem. 1997, 62, 6456.
[19] Boeckman, R. K.; Zhang, J.; Reeder, M. R. Org. Lett. 2002, 4, 3891.
[20] Li, Z. B.; Wang, F. P.; Chen, D. L. Chin. J. Org. Chem. 2000, 20, 282(in Chinese). (李正邦,王锋鹏,陈东林,有机化学, 2000, 20, 282.)
[21] Miller, S. J.; Kim, S. H.; Chen, Z. R.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 2108.
[22] Linderman, R. J.; Siedlecki, J.; ONeill, S. A.; Sun, H. J. Am. Chem. Soc. 1997, 119, 6919.
[23] Crimmins, M. T.; Tabet, E. A. J. Am. Chem. Soc. 2000, 122, 5473.
[24] Mori, M.; Kitamura, T.; Sakakibara, N.; Sato, Y. Org. Lett. 2000, 2, 543.
[25] Ortega, N.; Martin, T.; Martin, V. S. Org. Lett. 2006, 8, 871.
[26] Baek, S.; Jo, H.; Kim, H.; Kim, H.; Kim, S.; Kim, D. Org. Lett. 2005, 7, 75.
[27] Kim, G.; Sohn, T.; Kim, D.; Paton. R. S. Angew. Chem., Int. Ed. 2014, 53, 272.
[28] Liang, L.; Li, E. Q.; Dong, X. L.; Huang, Y. Org. Lett. 2015, 17, 4914.
[29] Cheng, C.; Zhang, J. Y.; Wang, X.; Miao, Z. W. J. Org. Chem. 2018, 83, 5450.

文章导航

/