研究论文

超临界二氧化碳中羰基钴催化的端基炔烃环三聚反应研究

  • 王亚琦 ,
  • 尹强 ,
  • 郭墩 ,
  • 韩利民 ,
  • 孙琪 ,
  • 洪海龙 ,
  • 索全伶
展开
  • 内蒙古工业大学化工学院 呼和浩特 010051

收稿日期: 2019-04-09

  修回日期: 2019-05-14

  网络出版日期: 2019-05-28

基金资助

国家自然科学基金(21266019);内蒙古自然科学基金(No. 2015MS0204)

Carbonyl Cobalt-Catalyzed Cyclotrimerization of Terminal Alkynes in Supercritical Carbon Dioxide

  • Yaqi Wang, ,
  • Qiang Yin, ,
  • Dun Guo, ,
  • Limin, Sun, Qi Han, ,
  • Hailong Hong, ,
  • Quanling Suo, ,
  • Quanling Suo.
Expand
  • Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051

Received date: 2019-04-09

  Revised date: 2019-05-14

  Online published: 2019-05-28

Supported by

Project supported by the National Natural Science Foundation of China(21266019);the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No. 2015MS0204)

摘要

原子经济性良好的炔烃[2+2+2]环加成反应与绿色溶剂超临界二氧化碳相结合, 是一个符合绿色化学原则的环境友好反应过程. 建立了一个纯超临界二氧化碳介质中八羰基二钴催化的端基炔烃环三聚反应体系, 在优化的反应条件下, 以较高产率选择性地制备1,2,4-三取代苯衍生物. 优化了催化剂用量、二氧化碳压力、反应温度及时间等反应条件, 讨论了反应物料及催化剂在超临界二氧化碳介质中的溶解性和相行为, 提出了端基炔烃环三聚反应机理, 并将反应底物从C≡C键拓展至C≡N键, 对超临界二氧化碳介质中炔-腈环加成反应进行了初步探索. 优化出的炔烃环三聚催化反应体系无需使用有机助溶剂和各类助剂, 底物适应性好, 产物选择性高, 为合成1,2,4-三取代苯衍生物提供了一种绿色合成方法.

本文引用格式

王亚琦 , 尹强 , 郭墩 , 韩利民 , 孙琪 , 洪海龙 , 索全伶 . 超临界二氧化碳中羰基钴催化的端基炔烃环三聚反应研究[J]. 有机化学, 2019 , 39(10) : 2898 -2905 . DOI: 10.6023/cjoc201904021

Abstract

Atom-efficient [2+2+2] cycloaddition reaction of alkynes in green solvent supercritical carbon dioxide (ScCO2) is an environmentally friendly reaction process that conforms to the principles of green chemistry. Cyclotrimerization of terminal alkynes catalyzed by Co2(CO)8 in pure ScCO2 has been studied to obtain 1,2,4-trisubstituted benzene derivatives with excellent selectivity. The reaction conditions for the cyclotrimerization were optimized, such as concentration of catalyst, CO2 pressure, reaction temperature and time. The solubility and phase behavior of the reaction materials and catalysts in ScCO2 medium were discussed, and the mechanism of Co2(CO)8 catalyzed cyclotrimerization of terminal alkynes was assumed. The reaction substrate was extended from C≡C (alkyne) to C≡N (nitrile), and the alkyne-nitrile cycloaddition reaction in ScCO2 was preliminary explored. Our optimized catalytic system for the cyclotrimerization of terminal alkynes exhibited wide substrate scope and high product selectivity, in which no organic co-solvent or additives were added. It provided a green synthetic method for 1,2,4-trisubstituted benzenes.

参考文献

[1] Mykhailiuk, P. K . Org. Biomol. Chem. 2019, 17, 2839.
[2] Chopade, P. R.; Louie, J . Adv. Synth. Catal. 2006, 348, 2307.
[3] (a) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria, M . Cotrimerizations of Acetylenic Compounds, John Wiley & Sons, Inc., New Jersey, 2007, pp. 1~ 302.
[3] (b) Kotha, S.; Lahiri, K.; Sreevani, G . Synlett 2018, 29, 2342.
[4] Zhang, N.; Wang, Q.; Shi, W. Z. Introduction to Modern Chemical Industry, China Petrochemical Press Co. Ltd, Beijing, 2013, p. 284 (in Chinese).
[4] ( 张娜, 王强, 时维振 , 现代化工导论, 中国石化出版社, 北京, 2013, p. 284.)
[5] Xue, H.; Martyn, P . Chem. Soc. Rev. 2012, 41, 1428.
[6] Skouta, R . Green Chem. Lett. Rev. 2009, 2, 121.
[7] (a) Qi, Z. R.; Jiang, H. F. . Prog. Chem. 2010, 22, 1274 (in Chinese).
[7] ( 戚朝荣, 江焕峰 , 化学进展, 2010, 22, 1274.)
[7] (b) Olmos, A.; Asensio, G.; Pérez, P. J . ACS Catal. 2016, 6 4265.
[7] (c) Li, J. H.; Jia, L. Q.; Jiang, H. F . Chin. J. Org. Chem. 2000, 20 293 (in Chinese).
[7] ( 李金恒, 贾兰齐, 江焕峰 , 有机化学, 2000, 20 293.)
[7] (d) Liu, W. J.; Liang, Y.; Tang, S.; Li, J. H . Chin. J. Org. Chem. 2004, 24 1553 (in Chinese).
[7] ( 刘文杰, 梁云, 唐石, 李金恒 , 有机化学, 2004, 24 1553.)
[8] (a) Chatterjee, M.; Ishizaka, T.; Kawanami, H . Selective Hydrogenation in Supercritical Carbon Dioxide Using Metal Supported Heterogeneous Catalyst, American Chemical Society, Washington, dC, 2015, pp. 191~ 250.
[8] (b) Ichikawa, S.; Seki, T.; Ikariya, T . Adv. Synth. Catal. 2014, 356 2643.
[9] (a) Wang, X.; Kawanami, H . Appl. Catal., A 2008, 349 86.
[9] (b) Bourne, R. A.; Xue, H.; Martyn, P.; George, M. W . Angew. Chem., Int. Ed. 2010, 48 5322.
[10] (a) Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Han, L. M . Tetrahedron Lett. 2014, 55 3878.
[10] (b) Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Han, L. M . Chin. J. Org. Chem. 2014, 34 2172 (in Chinese).
[10] ( 李发旺, 索全伶, 洪海龙, 竺宁, 王亚琦, 韩利民 , 有机化学, 2014, 34 2172.)
[11] (a) Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Guo, L. L.; Han, L. M . J. Supercrit. Fluids 2014, 92 70.
[11] (b) Wang, Y. L.; Suo, Q. L.; Han, L. M.; Guo, L. L.; Wang, Y.; Li, F. W . Tetrahedron. 2018, 74 1918.
[12] (a) Cheng, J. S.; Jiang, H. F . Eur. J. Org. Chem. 2004, 643.
[12] (b) Jiang, H. F . Curr. Org. Chem. 2005, 9 289.
[12] (c) Li, J. H . Acta Chim. Sinica 2004, 62 341 (in Chinese).
[12] ( 李金恒 , 化学学报, 2004, 62 341.)
[12] (d) Montilla, F.; Avilés, T.; Casimiro, T.; Ricardo, A. A.; Ponte, M. N. D . J. Organomet. Chem. 2001, 632 113.
[13] (a) Casimiro, T.; Montilla, F.; Garcia, S.; Avilés, T.; Raeissi, S.; Shariati, A.; Peters, C. J.; Ponte, M. N. D.; Aguiar-Ricardo, A. J. Supercrit. Fluids 2004, 31, 1.
[13] (b) Kazemi, S.; Belandria, V.; Janssen, N.; Richon, D.; Peters, C. J.; Kroon, M. C. J. Supercrit. Fluids 2012, 72, 320.
[13] (c) Long, J. J.; Cui, C. L.; Zhang, Y. Q.; Yuan, G. H . Dyes Pigm. 2015, 115 88.
[14] Kaganovich, V. S.; Rybinskaya, M. I . J. Organomet. Chem. 1988, 344, 383.
[15] Baxter, R. J.; Knox, G. R.; Moir, J. H.; Pauson, P. L.; Spicer, M. D . Organometallics. 1999, 18 206.
[16] Wang, Y. Q.; Han, L. M.; Suo, Q. L.; Zhu, N.; Hao, J. M.; Xie, R. J . Polyhedron. 2013, 54 221.
[17] (a) Giuliana Gervasio, E. S . J. Organomet. Chem. 1993, 44 203.
[17] (b) Cetini, G.; Gambino, O.; Rossetti, R.; Sappa, E. J. Organomet. Chem. 1967, 8 149.
[17] (c) Wakatsuki, Y.; Nomura, O.; Kitaura, K.; Morokuma, K.; Yamazaki, H. J. Am. Chem. Soc. 1983, 105 1907.
[17] (d) Peng, W.; Yi, Z.; Fan, Q. C.; Hao, F.; Xie, Y. M.; King, R. B.; Schaefer, I. H. F . Organometallics 2014, 33 2352.
[17] (e) Chen, Z.; Liu, J.; Evans, A. J.; Alberch, L.; Wei, A . Chem. Mater. 2012, 26, 941.
[18] Stockis, A.; Hoffmann, R . J. Am. Chem. Soc. 1980, 102, 2952.
[19] Pittman, C. U.; Smith, L. R . J. Organomet. Chem. 1975, 90, 203.
[20] Sugahara, T.; Guo, J. D.; Sasamori, T.; Nagase, S.; Tokitoh, N . Angew. Chem., Int. Ed. 2018, 57, 3499.
[21] Xu, L. M.; Yu, R. C.; Wang, Y. F.; Chen, J. H.; Yang, Z . J. Org. Chem. 2014, 44, 5744.
[22] Riache, N.; Dery, A.; Callens, E.; Poater, A.; Basset, J. M . Organometallics. 2015, 34 690.
文章导航

/