金属化亚甲胺叶立德在手性非天然α-氨基酸合成中的应用研究进展
收稿日期: 2019-04-24
修回日期: 2019-05-25
网络出版日期: 2019-06-03
基金资助
国家自然科学基金(Nos.21525207,21772147)和中国博士后科研基金(No.2017M620331)资助项目.
Recent Advances in Metallated Azomethine Ylides for the Synthesis of Chiral Unnatural α-Amino Acids
Received date: 2019-04-24
Revised date: 2019-05-25
Online published: 2019-06-03
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21525207, 21772147) and the China Postdoctoral Science Foundation (No. 2017M620331).
卫亮 , 肖露 , 胡远征 , 汪昨非 , 陶海燕 , 王春江 . 金属化亚甲胺叶立德在手性非天然α-氨基酸合成中的应用研究进展[J]. 有机化学, 2019 , 39(8) : 2119 -2130 . DOI: 10.6023/cjoc201904060
The development of efficient methods for the preparation of unnatural amino acids has long been an important goal since their widely application in synthetic and medicinal chemistry. The asymmetric α-functionalization of nucleophilic metalated azomethine ylides, which could be in situ-generated from readily-available aldimine esters, has been recogonized as a powerful strategy to synthesize unnatural amino acids. Over the past 20 years, tranistion metal-catalyzed asymmetric construction of unnatural amino acids using azomethine ylides have been extensively studied. In this review, the progress on metallated azomethine ylides invovled aymmetric transformation for the synthesis of unnatural amino acids is summarized according to eletrophilic reagents.
Key words: azomethine ylide; asymmetric catalysis; unnatural α-amino acid
[1] Wu, W. T. Biochemistry, People's Medical Publishing House, Beijing, 2004, pp. 39~42(in Chinese). (吴梧桐,生物化学,人民卫生出版社,北京, 2004, pp. 39~42.)
[2] (a) Bellier, B.; McCort-Tranchenpain, I.; Ducos, B.; Danascimento, S.; Meudal, H.; Noble, F.; Garbay, C.; Roques, B. P. J. Med. Chem. 1997, 40, 3947.
(b) Dery, O.; Josien, H.; Grassi, J.; Chassaing, G.; Couraud, J. Y.; Lavielle, S. Biopolymers 1996, 39, 67.
(c) Benedetti, E.; Gavuzzo, E.; Santini, A.; Kent, D. R.; Zhu, Y.-F.; Zhu, Q.; Mahr, C.; Goodman, M. J. Pept. Sci. 1995, 1, 349.
(d) Schiller, P. W.; Weltrowska, G.; Nguyen, T. M.-D.; Lemieux, C.; Chung, N. N.; Marsden, B. J.; Wilkes, B. C. J. Med. Chem. 1991, 34, 3125.
[3] (a) Koert, U. Nachr. Chem. Technol. Lab. 1995, 43, 347.
(b) Yano, S.; Nakanishi, Y.; Ikuina, Y.; Ando, K.; Yoshida, M.; Saitoh, Y.; Matsuda, Y.; Bando, C. J. Antibiot. 1997, 50, 992.
(c) Kende, A. S.; Liu, K.; Jos Brands, K. M. J. Am. Chem. Soc. 1995, 117, 10597.
[4] (a) Ohfune, Y.; Shinada, T. Eur. J. Org. Chem. 2005, 5127.
(b) Vogt, H.; Brase, S. Org. Biomol. Chem. 2007, 5, 406.
(c) Bera, K.; Namboothiri, I. N. N. Asian J. Org. Chem. 2014, 3, 1234.
[5] (a) Adrio, J.; Carretero, J. C. Chem. Commun. 2014, 50, 12434.
(b) O'Donnell, M. J. Acc. Chem. Res. 2004, 37, 506.
(c) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10.
(d) Lygo, B.; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518.
(e) Maruoka, K.; Ooi, T.; Kano, T. Chem. Commun. 2007, 1487.
(f) Kazmaier, U. Org. Chem. Front. 2016, 3, 1541.
(f) Tang, S.; Zhang, X.; Sun, J.; Niu, D.; Chruma, J. J. Chem. Rev. 2018, 118, 10393.
[6] (a) Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364.
(b) Tsubogo, T.; Saito, S.; Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 13321.
[7] (a) Li, Q.; Ding, C.-H.; Hou, X.-L.; Dai, L.-X. Org. Lett. 2010, 12, 1080.
(b) Strohmeier, M.; Leach, K.; Zajac, M. A. Angew. Chem., Int. Ed. 2011, 50, 12335.
(c) Hernández-Toribio, J.; Arrayás, R. G.; Carretero, J. C. Chem. Eur. J. 2011, 17, 6334.
(d) He, F.-S.; Jin, J.-H.; Yang. Z.-T.; Yu, X.; Fessey, J. S.; Deng, W.-P. ACS Catal. 2016, 6, 652.
(e) Konno, T.; Watanabe, S; Takahashi, T.; Tokoro, Y.; Fukuzawa, S. Org. Lett. 2013, 15, 4418.
(f) Imae, K.; Konno, T.; Ogata, K.; Fukuzawa, S. Org. Lett. 2012, 13, 4410.
[8] (a) Koizumi, A.; Kimura, M.; Arai, Y.; Tokoro, Y.; Fukuzawa, S. J. Org. Chem. 2015, 80, 10883;
(b) Matsuda, Y.; Koizumi, A.; Haraguchi, R.; Fukuzawa, S. J. Org. Chem. 2016, 81, 7939;
(c) Koizumi, A.; Matsuda, Y.; Haraguchi, R.; Fukuzawa, S. Tetrahedron:Asymmetry 2017, 28, 428;
(d) Xue, Z.-Y.; Song, Z.-M.; Wang, C.-J. Org. Biomol. Chem. 2015, 13, 5460.
[9] Xue, Z.-Y.; Liu, T.-L.; Lu, Z.; Huang, H.; Tao, H.-Y.; Wang, C.-J. Chem. Commun. 2010, 46, 1727.
[10] Xue, Z.-Y.; Li, Q.-H.; Tao, H.-Y.; Wang, C.-J. J. Am. Chem. Soc. 2011, 133, 11757.
[11] Wang, M.; Wang, C.-J. Lin, Z. Organometallics 2012, 31, 7870.
[12] Teng, H.-L.; Luo, F.-L.; Tao, H.-T.; Wang, C.-J. Org. Lett. 2011, 13, 5600.
[13] (a) Panday, S. K.; Prasad, J.; Dikshit, D. K. Tetrahedron:Asymmetry 2009, 20, 1581.
(b) Smith, M. B. Alkaloids:Chem. Biol. Perspect. 1998, 12, 229.
(c) Benoit, R.; Pascal, C.; Dominique, F.; Francois, S. Trends Heterocycl. Chem. 1991, 2, 155.
[14] Teng, H.-L.; Huang, H.; C.-J. Chem. Eur. J. 2012, 18, 12614.
[15] (a) Mori, T.; Takahashi, K.; Kashiwabara, M.; Uemura, D. Tetrahedron Lett. 1985, 26, 1073;
(b) Omura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H.; Sasaki, Y. J. Antibiot. 1991, 44, 113;
(c) S. Omura, K.; Matsuzaki, T.; Fujimoto, K.; Kosuge, T.; Furuya, S.; Fujita, A. J. Antibiot. 1991, 44, 117.
[16] Kim, H. Y.; Li, J.-Y.; Kim, S.; Oh, K. J. Am. Chem. Soc. 2011, 133, 20750.
[17] Bai, X.-F.; Li, L.; Xu, Z.; Zheng, Z.-J.; Xia, C.-G.; Xu, L.-W. Chem. Eur. J. 2016, 18, 10339.
[18] Yuan, Y.; Yu, B.; Bai, X.-F.; Xu, Z.; Zheng, Z.-J.; Cui, Y.-M.; Cao, J.; Xu, L.-W. Org. Lett. 2017, 19, 4896.
[19] Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583.
[20] Yan, X.-X.; Peng, Q.; Li, Q.; Zhang, K.; Yao, J.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem.Soc. 2008, 130, 14362.
[21] (a) Arai, T.; Mishiro, A.; Matsumura, E.; Awata, A.; Shirasugi, M. Chem. Eur. J. 2012, 18, 11219.
(b) Imae, K.; Shimizu, K.; Ogata, K.; Fukuzawa, S. J. Org. Chem. 2011, 76, 3604.
(c) Shang, D. J.; Liu, Y. L.; Zhou, X.; Liu, X. H.; Feng, X. M. Chem. Eur. J. 2009, 15, 3678.
(d) Liang, G.; Tong, M.-C.; Tao, H. Y.; Wang, C.-J. Adv. Synth. Catal. 2010, 352, 1851.
[22] (a) Hernández-Toribio, J.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2008, 130, 16150.
(b) Hernández-Toribio, J.; Arrayás, R. G.; Carretero, J. C. Chem. Eur. J. 2010, 16, 1153.
[23] (a) Paradisi, M. P.; Torrini, I.; Zecchini, G. P.; Lucente, G.; Gavuzzo, E.; Mazza, F.; Pochetti, G. Tetrahedron 1995, 51, 2379.
(b) Burgess, K.; Ho, K.-K.; Pal, B. J. Am. Chem. Soc. 1995, 117, 3808.
(c) Giannis, A.; Kolter, T. Angew. Chem., Int. Ed. 1993, 32, 1244.
(d) Balaram, P. Curr. Opin. Struct. Biol. 1992, 2, 845.
[24] (a) You, S.-L.; Hou, X.-L.; Dai, L.-X.; Cao, B.-X.; Sun, J. Chem. Commun. 2000, 1933.
(b) Kazmaier, U.; Zumpe, F. L. Angew. Chem., Int. Ed. 1999, 38, 1468.
(c) Trost, B. M.; Ariza, X. J. Am. Chem. Soc. 1999, 121, 10727.
(d) Kazmaier, U.; Maier, S.; Zumpe, F. L. Synlett 2000, 1523.
(e) Genet, J. P.; Juge, S.; Achi, S.; Mallart, S.; Ruiz Montes, J.; Levif, G. Tetrahedron 1988, 44, 5263.
(f) Baldwin, I. C.; Williams, J. M. J.; Beckett, R. P. Tetrahedron:Asymmetry 1995, 6, 1515.
[25] (a) Cheng, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron:Asymmetry 2001, 12, 1567.
(b) Kanayama, T.; Yoshida, K.; Miyabe, H.; Takemoto, Y. Angew. Chem., Int. Ed. 2003, 42, 2054.
(c) Kanayama, T.; Yoshida, K.; Miyabe, H.; Kimachi, T.; Takemoto, Y. J. Org. Chem. 2003, 68, 6197.
[26] (a) Malleron, J. L.; Fiaud, J. C.; Legros, J. Y. Handbook of Palladium-Catalyzed Organic Reactions, Academic Press, San Diego, 1997.
(b) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
(c) Trost, B. M. Acc. Chem. Res. 1996, 29, 355.
(d) Williams, J. M. J. Synlett 1996, 705.
(e) Tsuji, J. Palladium Reagents and Catalysts, Wiley, Chichester, 1995.
[27] (a) Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633.
(b) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.
(c) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929.
(d) Inamdar, S. M.; Shinde, V. S.; Patil, N. T. Org. Biomol. Chem. 2015, 13, 8116.
[28] Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819.
[29] Wei, L.; Xu, S.-M.; Zhu, Q.; Che, C.; Wang, C.-J. Angew. Chem., Int. Ed. 2017, 56, 12312.
[30] Dolbeare, K.; Pontoriero, G. F.; Gupta, S. K.; Mishra, R. K.; Johnson, R. L. J. Med. Chem. 2003, 46, 727.
[31] Wei, L.; Xiao, L.; Wang, C.-J. Adv. Synth. Catal. 201, 360, 4715.
[32] (a) Huo, X.; Fu, J.; He, X.; Chen, J.; Xie, F.; Zhang, W. Chem. Commun. 2018, 54, 599.
(b) Liu, P.; Hou, X.; Li, B.; He, R.; Zhang, J.; Wang, T.; Xie, F.; Zhang, W. Org. Lett., 2018, 20, 6564.
[33] (a) Paradisi, M. P.; Torrini, I.; Zecchini, G. P.; Lucente, G.; Gavuzzo, E.; Mazza, F.; Pochetti, G. Tetrahedron 1995, 51, 2379.
(b) Burgess, K.; Ho, K.-K.; Pal, B. J. Am. Chem. Soc. 1995, 117, 3808.
(c) Giannis, A.; Kolter, T. Angew. Chem., Int. Ed. 1993, 32, 1244.
(d) Balaram, P. Curr. Opin. Struct. Biol. 1992, 2, 845.
[34] Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis, Vol. I~Ⅲ, Suppl. I~Ⅱ, Springer, New York, 1999.
[35] Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
[36] (a) Luparia, M.; Oliveira, M. T.; Audisio, D.; Frébault, F.; Goddard, R.; Maulide, N. Angew. Chem., Int. Ed. 2011, 50, 12631.
(b) McInturff, E. L.; Yamaguchi, E.; Krische, M. J. J. Am. Soc. Chem. 2012, 134, 20628.
(c) Morgen, M.; Bretzke, S.; Li, P.; Menche, D. Org. Lett. 2010, 12, 4494.
(d) Nojiri, A.; Kumagai, N.; Shibasaki, M. J. Am. Soc. Chem. 2009, 131, 3779.
(e) Tian, X.; Cassani, C.; Liu, Y.; Moran, A.; Urakawa, A.; Galzerano, P.; Arceo, E.; Melchiorre, P. J. Am. Soc. Chem. 2011, 133, 17934.
(f) Wang, B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. J. Am. Soc. Chem. 2007, 129, 768.
[37] (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.
(b) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
(c) Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.
[38] (a) Naesborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193.
(b); Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.
(c) Cruz, F. A.; Dong, V. M. J. Am. Chem. Soc. 2017, 139, 1029.
(d) Jiang, X.; Beiger, J. J.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 87.
(f) Zheng, H.; Wang, Y.; Xu, C.; Xu, X.; Lin, L.; Liu, X.; Feng, X. Nat. Commun. 2018, 9, 1968.
[39] Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.
[40] Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. H. J. Am. Chem. Soc. 2003, 125, 14272.
[41] (a) Raskatov, J. A.; Spiess, S.; Gnamm, C.; Brödner, K.; Rominger, F.; Helmchen, G. Chem. Eur. J. 2010, 16, 6601.
(b) Spiess, S.; Welter, C.; Franck, G.; Taquet, J.-P.; Helmchen, G. Angew. Chem., Int. Ed. 2008, 47, 7652.
[42] (a) Wu, A.; Chakraborty, A.; Fettinger, J. C.; Flowers Ii, R. A.; Isaacs, L. Angew. Chem., Int. Ed. 2002, 41, 4028.
(b) Safont-Sempere, M. M.; Fernández, G.; Würthner, F. Chem. Rev. 2011, 111, 5784.
(c) He, Z.; Jiang, W.; Schalley, C. A. Chem. Soc. Rev. 2015, 44, 779.
[43] (a) Morimoto, Y.; Takaishi, M.; Kinoshita, T.; Sakaguchi, K.; Shibata, K. Chem. Commun. 2002, 42.
(b) Spangenberg, T.; Schoenfelder, A.; Breit, B.; Mann, A. Org. Lett. 2007, 9, 3881.
[44] Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080.
[45] (a) Nugent, T. C. Chiral Amine Synthesis:Methods, Developments and Applications, Wiley-VCH, Weinheim, 2010.
(b) Puentes, C. O.; Kouznetsov, V. J. Heterocycl. Chem. 2002, 39, 595.
(c) Przheval'skii, N. M.; Grandberg, I. I. Usp. Khim. 1987, 56, 814.
(d) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
(e) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774.
(f) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595.
[46] Wei, L.; Zhu, Q.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Nat. Commun. 2019, 10, 1594.
/
〈 |
|
〉 |