五配位氧磷烷分子间配体交换反应-RNA水解和融合过程的化学模型
收稿日期: 2019-03-20
修回日期: 2019-04-17
网络出版日期: 2019-06-03
基金资助
国家自然科学基金(Nos.21778042,41876072,21772163,41576081)、厦门南方海洋研究中心(No.17GYY002NF02)及中央高校基本科研业务费专项资金(No.20720170069)资助项目.
Intermolecular Ligand Exchange of Penta-oxy Phosphoranes: Potential Chemical Model for RNA Hydrolysis and Fusion
Received date: 2019-03-20
Revised date: 2019-04-17
Online published: 2019-06-03
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21778042, 41876072, 21772163, 41576081), the Xiamen Southern Oceanographic Center (No. 17GYY002NF02), and the Fundamental Research Funds for the Central Universities (No. 20720170069).
王珣 , 陈苏 , 吴翊乐 , 王晓宇 , 唐果 , 刘艳 , 许鹏翔 , 高祥 , 赵玉芬 . 五配位氧磷烷分子间配体交换反应-RNA水解和融合过程的化学模型[J]. 有机化学, 2019 , 39(8) : 2311 -2316 . DOI: 10.6023/cjoc201905007
Penta-coordinated phosphoranes (ab2) with a five-member cycle and three ligands would simultaneously exchange with themselves under base catalysis to form three different penta-oxy phosphoranes with all the combinatorial ligands referred as a3, b3, and a2b. If we consider a3 and b3 as parents, the products obtained from exchange, namely a2b and ab2, could be regarded as the offspring of the first generation, leading to the diversified chemical structures. Thus, these fascinating reactions could be considered as a promising chemical model for studying the unique chemistry of possible penta-coordinated phosphorus intermediates in the process of RNA self-splicing, hydrolysis and fusion for gene transcription and biological information storage.
[1] Lassila, J. K.; Zalatan, J. G.; Herschlag, D. Ann. Rev. Biochem. 2011, 80, 669.
[2] Petrovic, D.; Szeler, K.; Kamerlin, S. C. L. Chem. Commun. 2018, 54, 3077.
[3] Guo, F. M.; Yue, Z. K.; Trajkovski, M.; Zhou, X. P.; Cao, D.; Li, Q.; Wang, B. F.; Wen, X.; Plavec, J.; Peng, Q.; Xi, Z.; Zhou, C. Z. J. Am. Chem. Soc. 2018, 140, 11893.
[4] (a) Messina, K. J.; Bevilacqua, P. C. J. Am. Chem. Soc. 2018, 140, 10578.
(b) Wilson, T. J.; Liu, Y.; Domnick, C.; Kath-Schorr, S.; Lilley, D. M. J. Am. Chem. Soc. 2016, 138, 6151.
[5] Nguyen, T. C.; Cao, X. Y.; Yu, P. F.; Xiao, S.; Lu, J.; Biase, F. H.; Sridhar, B.; Huang, N.; Zhang, K.; Zhong, S. Nat. Commun. 2016, 7, 12023.
[6] (a) Uraguchi, D.; Sasaki, H.; Kimura, Y.; Ito, T.; Ooi, T. J. Am. Chem. Soc. 2018, 140, 2765.
(b) Yliniemela, A.; Uchimaru, T.; Tanabe, K.; Taira, K. J. Am. Chem. Soc. 1993, 115, 3032.
(c) Westheimer, F. H. Acc. Chem. Res. 1968, 1, 70.
[7] Jin, Y.; Richards, N. G.; Waltho, J. P.; Blackburn, G. M. Angew. Chem., Int. Ed. 2017, 56, 4110.
[8] DeYonker, N. J.; Webster, C. E. Biochemistry 2015, 54, 4236.
[9] DeYonker, N. J.; Webster, C. E. J. Am. Chem. Soc. 2013, 135, 13764.
[10] (a) Wittig, G.; Rieber, M. Justus Liebigs Ann. Chem. 1949, 562, 187.
(b) Pajkert, R.; Röeschenthaler, G.-V. Organophosphorus Chem. 2017, 46, 323.
(c) Swamy, K. C. K.; Kumar, N. S. Acc. Chem. Res. 2006, 39, 324.
[11] (a) Hou, J. B.; Tang, G.; Guo, J. N.; Liu, Y.; Zhang, H.; Zhao, Y. F. Tetrahedron:Asymmetry 2009, 20, 1301.
(b) Wang, T.; Zhang, P. B.; Hu, G. B.; Gao, Y. Z.; Wu, Y. L.; Xu, P. X.; Liu, Y.; Zhao, Y. F. ChemistrySelect 2018, 3, 7849.
(c) Fu, H.; Li, Z. L.; Zhao, Y. F.; Tu, G. Z. J. Am. Chem. Soc.1999, 121, 291.
(d) Ying, J. X.; Fu, S. S.; Li, X.; Feng, L. B.; Xu, P. X.; Liu, Y.; Gao, X.; Zhao, Y. F. Chem. Commun. 2018, 54, 8598.
[12] (a) Ramirez, F. Acc. Chem. Res. 1968, 1, 168.
(b) Ramirez, F.; Chaw, Y. F.; Marecek, J. F.; Ugi, I. J. Am. Chem. Soc. 1974, 96, 2429.
[13] (a) Holmes, R. R. Acc. Chem. Res. 2004, 37, 746.
(b) Timosheva, N. V.; Chandrasekaran, A.; Holmes, R. R. Inorg. Chem. 2006, 45, 3113.
[14] (a) Ramirez, F.; Tasaka, K.; Desai, N. B.; Smith, C. P. J. Am. Chem. Soc. 1968, 90, 751.
(b) Ramirez, F.; Loewengart, G. V.; Tsolis, E. A.; Tasaka, K. J. Am. Chem. Soc. 1972, 94, 3531.
[15] Ramirez, F.; Marecek, J. F.; Okazaki, H. V. A. J. Am. Chem. Soc. 1976, 98, 5310.
/
〈 |
|
〉 |