综述与进展

脱氢偶联制备芳基醚方法的研究进展

  • 唐灏 ,
  • 骆钧飞 ,
  • 解攀
展开
  • a 宁波大学材料科学与化学工程学院 宁波 315211
    b 陕西科技大学化学与化工学院 陕西省轻化工助剂重点实验室 西安 710021

收稿日期: 2019-04-04

  修回日期: 2019-05-09

  网络出版日期: 2019-06-06

基金资助

浙江省自然科学基金(LQ19B020002);宁波市自然科学基金(2018A610241);浙江省教育厅(Y201839228);宁波大学王宽诚幸福基金资助项

Advances on the Synthesis of Aryl Ethers via Dehydrogenative Coupling

  • Hao Tang ,
  • Junfei Luo ,
  • Pan Xie
Expand
  • a School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211
    b Shaanxi Key Laboratory of Chemistry Additives for Industry, College of Chemistry and Chemistry Engineering, Shaanxi University of Science & Technology, Xi?an 710021

Received date: 2019-04-04

  Revised date: 2019-05-09

  Online published: 2019-06-06

Supported by

Project supported by the Natural Science Foundation of Zhejiang Province(LQ19B020002);The Municipal Natural Science Foundation of Ningbo City(2018A610241);The Education Foundation of Zhejiang Province(Y201839228);The K. C. Wong Magna Fund in Ningbo University

摘要

芳香醚结构是许多天然产物以及药物分子的重要骨架, 同时也是非常重要的有机合成中间体. 通常, 芳香醚由含离去官能团的芳烃与醇或酚偶联制得. 此类方法由于需对底物进行预官能团化, 因此存在着低原子及步骤经济性不足等问题. 近年来, 利用过渡金属催化的C—H键活化策略, 通过芳烃与醇或酚的脱氢偶联实现芳基醚的制备, 越来越受到有机化学家关注. 综述了最近通过脱氢偶联制备芳香醚化合物的研究进展. 围绕各类方法的底物适应范围和反应机理等进行详细论述, 并就该领域的局限性和未来的发展前景进行总结和展望.

本文引用格式

唐灏 , 骆钧飞 , 解攀 . 脱氢偶联制备芳基醚方法的研究进展[J]. 有机化学, 2019 , 39(10) : 2735 -2743 . DOI: 10.6023/cjoc201904011

Abstract

Aryl ethers are important central motifs that are abundant in many natural products and drug molecules, as well as versatile building blocks for organic synthesis. Aryl ethers were usually synthesized through the coupling reactions between leaving group substituted arenes and alcohols. However, the introduction of leaving group requires extra synthetic operation and produces lots of wastes. Over the past decade, the method for the synthesis of aryl ethers via C—H alkoxylation or aryloxylation has received much attention due to its potential as an atom and step efficient methodology. Herein, the research advances on the synthesis of aryl ethers through dehydrogenative coupling are reviewed. The detailed substrate scopes and reaction mechanisms, as well as the limitations of current procedures and the prospects for the future, are discussed.

参考文献

[1] (a) Jabran, K.; Ehsanullah; Hussain, M.; Farooq, M.; Babar, M.; Do?an, M.-N.; Lee, D.-J. Weed Biol. Manage. 2012, 12, 136.
[1] (b) Negro, R.; Formoso, G.; Mangieri, T.; Pezzarossa, A.; Dazzi, D.; Hassan, H. J. Clin. Endocrinol. Metab. 2006, 91, 2587.
[1] (c) Kosenkova, Y.-S.; Polovinka, M.; Komarova, N.; Korchagina, D.; Kurochkina, N. Y.; Cheremushkina, V.; Salakhutdinov, N. Chem. Nat. Compd. 2007, 43, 712.
[1] (d) Deng, H.; Jung, J.-K.; Liu, T.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 9032.
[2] (a) Chen, G.; Du, J. Chin. J. Org. Chem. 2014, 34, 65 (in Chinese).
[2] ( 陈国军, 杜建时, 有机化学, 2014, 34, 65 )
[2] (b) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717.
[3] (a) Ullmann, F.; Sponagel, P. Ber. Dtsch. Chem. Ges. 1905, 38, 2211.
[3] (b) Xiao, S.; Zhu, J.; Mu, X.; Li, Z. Chin. J. Org. Chem. 2013, 33, 1668 (in Chinese).
[3] ( 肖尚友, 朱俊, 穆小静, 李正华, 有机化学, 2013, 33, 1668.)
[4] (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.
[4] (b) Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937.
[4] (c) Lam, P. Y. S.; Vincent, G.; Clark, C. G.; Deudon, S.; Jadhav, P. K. Tetrahedron Lett. 2001, 42, 3415.
[5] (a) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369.
[5] (b) Torraca, K. E.; Huang, X.; Parrish, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 10770.
[5] (c) Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 13109.
[6] Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W MacMillan, D. W. C .; Nature 2015, 524, 330.
[7] (a) Yang, F.; Zhang, H.; Liu, X.; Wang, B.; Ackermann, L. Chin. J. Org. Chem. 2019, 39, 59 (in Chinese).
[7] ( 杨帆致, 张晗, 刘旭日, 王博, Lutz, A., 有机化学, 2019, 39, 59)
[7] (b) Leila, R.; Asieh, Y.; Mehdi, S. ChemCatChem 2018, 10, 20.
[7] (c) Kamellia, N.; Sheida, A.; Mohammad, N.; Parvaneh, D. K. N.; Esmail, V. RSC Adv. 2018, 8, 19125
[7] (d) Bhunia, S.; Pawar, G. G.; Kumar, S. V.; Jiang, Y.; Ma, D. Angew. Chem., Int. Ed. 2017, 56, 16136
[7] (e) Ding, H.; Li, J.; Guo, Q.; Xiao, Y. Chin. J. Org. Chem.(in Chinese). 2017, 37, 3112
[7] ( 丁怀伟, 李娟, 郭庆辉, 肖琰, 有机化学, 2017, 37, 3112)
[8] Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141.
[9] Wang, G.-W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476.
[10] Jiang, T.-S.; Wang, G.-W. J. Org. Chem. 2012, 77, 9504
[11] Shi, S.-P.; Kuang, C.-X. J. Org. Chem. 2014, 79, 6105.
[12] Li, W.; Sun, P.-P. J. Org. Chem. 2012, 77, 8362
[13] Yin, Z.-W.; Jiang, X.-Q.; Sun, P.-P. J. Org. Chem. 2013, 78, 10002
[14] Zhang, C .; Sun, P.-P. J. Org. Chem. 2014, 79, 8457.
[15] Gao, T.-T.; Sun, P.-P. J. Org. Chem. 2014, 79, 9888.
[16] Peron, F.; Fossey, C.; Santos, J. O. S.; Cailly, T.; Fabis, F. Chem.- Eur. J. 2014, 20, 1.
[17] Chen, F.-J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 4187.
[18] (a) Shen, T.; Wang, X.-N.; Lou, H.-X. Nat. Prod. Rep. 2009, 26, 916.
[18] (b) Veitch, N. C. Nat. Prod. Rep. 2007, 24, 417.
[18] (c) Watzke, A.; O'Malley, S. J.; Bergman, R. G.; Ellman, J. A. J. Nat. Prod. 2006, 69, 1231.
[18] (d) Tsui, G. C.; Tsoung, J.; Dougan, P.; Lautens, M. Org. Lett. 2012, 14, 5542.
[19] Wang, X.-S.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 12203.
[20] Wang, H.-B.; Li, G.; Engle, K. M.; Yu, J.-Q.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 6774.
[21] Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S Yu, J.-Q .; J. Am. Chem. Soc. 2013, 135, 1236.
[22] Wang, Z.-L.; Zhao, L.; Wang, M.-X. Org. Lett. 2011, 13, 6560.
[23] Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, K.; Ren, B.-Z.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. J. Org. Chem. 2014, 79, 10399.
[24] Bhadra, S.; Matheis, C.; Katayev, D.; Goo?en, L. J. Angew. Chem. 2013, 125, 9449.
[25] Roane, J.; Daugulis, O. Org. Lett. 2013, 15, 5842.
[26] Yin, X.-S.; Li, Y.-C.; Yuan, J.; Gua, W.-J.; Shi, B.-F. Org. Chem. Front. 2015, 2, 119.
[27] Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, Z.-J.; Zheng, X.-X.; Gong, J.-F.; Niu, J.-F.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 272.
[28] Zheng, Y.-W.; Ye, P.; Chen, B.; Meng, Q.-Y.; Feng, K.; Wang, W.-G.; Wu, L.-Z.; Tung, C.-H. Org. Lett. 2017, 19, 2206.
[29] Ohkubo, K.; Kobayashi, T.; Fukuzumi, S. Opt. Express 2012, 20, A360.
[30] Tang, L.; Pang, Y.; Yan, Q.; Shi, L.-Q.; Huang, J.-H.; Du, Y.-F.; Zhao, K. J. Org. Chem. 2011, 76, 2744.
[31] Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 9250.
[32] Wei, Y.; Yoshikai, N. J. Org. Chem. 2011, 13, 5504.
[33] Zhao, J.-J.; Wang, Y.; He, Y.-M.; Liu, L.-Y.; Zhu, Q. Org. Lett. 2012, 14, 1078.
[34] (a) Zhao, J.-J.; Wang, Y.; Zhu, Q. Synthesis 2012, 44, 1551.
[34] (b) Zhao, J.-J.; Zhang, Q.; Liu, L.-Y.; He, Y.-M.; Li, J.; Li, J.; Zhu, Q. Org. Lett. 2012, 14, 5362.
[35] Roane, J.; Daugulis, O. Org. Lett. 2013, 15, 5842.
[36] Hao, X.-Q.; Chen, L.-J.; Ren, B.; Li, L.-Y.; Yang, X.-Y.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Org. Lett. 2014, 16, 1104.
[37] Zhou, Y.-F.; Zhu, J.-M.; Li, B.; Zhang, Y.; Feng, J.; Hall, A.; Shi, J.-Y.; Zhu, W.-L. Org. Lett.. 2016, 18, 3803
[38] Kumar, G. S.; Pieber, B.; Reddy, K. R.; Kappe, C. O. Chem.-Eur. J. 2012, 18, 6124.
[39] Barve, B. D.; Wu, Y.-C.; El-Shazly, M.; Korinek, M.; Cheng, Y.-B.; Wang, J.-J.; Chang, F.-R. Tetrahedron 2015, 71, 2290
[40] Barve, B. D.; Wu, Y.-C El-Shazly, M.; Korinek, M.; Cheng, Y.-B.; Wang, J.-J.; Chang, F.-R. Org. Lett. 2014, 16, 1912.
[41] Boominathan, S. S. K.; Hu, W.-P.; Senadi, G. C.; Vandavasia, J. K.; Wanga, J.-J. Chem. Commun. 2014, 50, 6726.
文章导航

/