研究论文

基于手性氨硼烷的β-烯胺腈不对称转移氢化反应

  • 周启文 ,
  • 冯向青 ,
  • 杨晶 ,
  • 杜海峰
展开
  • a 北京化工大学生命科学与技术学院 化工资源有效利用国家重点实验室 北京 100029;
    b 中国科学院化学研究所北京国家分子科学研究中心 中国科学院分子识别与功能重点实验室 北京 100190

收稿日期: 2019-04-30

  修回日期: 2019-06-06

  网络出版日期: 2019-06-12

基金资助

国家自然科学基金(Nos.21825108,91856103)资助项目.

Asymmetric Transfer Hydrogenations of β-Enamine Cyanide with Chiral Ammonia Borane

  • Zhou Qiwen ,
  • Feng Xiangqing ,
  • Yang Jing ,
  • Du Haifeng
Expand
  • a Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Bioprocess, College of Life Sciences and Technology, Beijing University of Chemical Technology, Beijing 100029;
    b Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190

Received date: 2019-04-30

  Revised date: 2019-06-06

  Online published: 2019-06-12

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21825108, 91856103).

摘要

不对称转移氢化是获得光学活性化合物的一类重要反应.利用手性磷酸和氨硼烷释放氢气原位生成手性氨硼烷,水作为添加剂促进手性氨硼烷的循环再生,顺利实现了β-烯胺腈的不对称转移氢化反应,以48%~98%的收率和61%~95% ee获得了一系列手性β-胺基腈类化合物.

本文引用格式

周启文 , 冯向青 , 杨晶 , 杜海峰 . 基于手性氨硼烷的β-烯胺腈不对称转移氢化反应[J]. 有机化学, 2019 , 39(8) : 2188 -2195 . DOI: 10.6023/cjoc201904079

Abstract

The asymmetric transfer hydrogenation represents one important class of reactions for the synthesis of optically active compounds. A chiral ammonia borane was generated in situ from an H2 release reaction between chiral phosphoric acid and ammonia borane, which could be regenerated by the assistance of water after the hydrogen transfer process and made this reaction catalytic. With this chiral ammonia borane, asymmetric transfer hydrogenations of β-enamine cyanides were realized to afford the desired products in 48%~98% yields with 61%~95% ee.

参考文献

[1] For selected reviews, see:(a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.
(b) Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.
(c) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
(d) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443.
(e) Zhang, Z.; Butt, N. A.; Zhang, W. Chem. Rev. 2016, 116, 14769.
[2] Hantzsch, A. Justus Liebigs Ann. Chem. 1882, 215, 1.
[3] Mumm, O.; Diederichsen, J. Justus Liebigs Ann. Chem. 1839, 538, 195.
[4] Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, 5th ed., W. H. Freeman and Company, New York, 2002.
[5] (a) Ouellet, S. G.; Walji, A. M.; MacMillan, D. W. C. Acc. Chem. Res. 2007, 40, 1327.
(b) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498.
(c) McSkimming, A.; Colbran, S. B. Chem. Soc. Rev. 2013, 42, 5439.
(d) Phillips, A. M. F.; Pombeiro, A. J. L. Org. Biomol. Chem. 2017, 15, 2307.
[6] (a) Shore, S. G.; Parry, R. W. J. Am. Chem. Soc. 1955, 77, 6084.
(b) Stephens, F. H.; Pons, V.; Baker, R. T. Dalton Trans. 2007, 2613.
(c) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079.
[7] (a) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009, 38, 279.
(b) Marder, T. B. Angew. Chem., Int. Ed. 2007, 46, 8116.
(c) Gutowska, A.; Li, L.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Angew. Chem., Int. Ed. 2005, 44, 3578.
(d) Grochala, W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283.
[8] Yang, X.; Zhao, L.; Fox, T.; Wang, Z.-X.; Berke, H. Angew. Chem., Int. Ed. 2010, 49, 2058.
[9] Yang, X.; Fox, T.; Berke, H. Chem. Commun. 2011, 47, 2053.
[10] Yang, X.; Fox, T.; Berke, H. Org. Biomol. Chem. 2012, 10, 852.
[11] Yang, X.; Fox, T.; Berke, H. Tetrahedron 2011, 67, 7121.
[12] Xu, W.; Fan, H.; Wu, G.; Chen, P. New J. Chem. 2012, 36, 1496.
[13] Winner, L.; Ewing, W. C.; Geetharani, K.; Dellermann, T.; Jouppi, B.; Kupfer, T.; Braunschweig, H. Angew. Chem., Int. Ed. 2018, 57, 12275.
[14] For selected examples, for the metal organic catalysts see:(a) Chong, C. C.; Hirao, H.; Kinjo, R. Angew. Chem., Int. Ed. 2014, 53, 3342.
(b) Ding, F.; Zhang, Y.; Jiang, Y.; Bao, R. L.; Lin, K.; Shi, L. Chem. Commun. 2017, 53, 9262.
(c) Zhou, Q.; Zhang, L.; Yang, J.; Du, H. Org. Lett. 2016, 18, 5189.
[15] For selected examples, for the metal catalysts see:(a) Fu, S.; Chen, N.-Y.; Liu, X.; Shao, Z.; Luo, S.-P.; Liu, Q. J. Am. Chem. Soc. 2016, 138, 8588.
(b) Shao, Z.; Fu, S.; Wei, M.; Zhou, S.; Liu, Q. Angew. Chem., Int. Ed. 2016, 55, 1463.
(c) Das, M.; Kaicharla, T.; Teichert, J. F. Org. Lett. 2018, 20, 4926.
(d) Ménard, G.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 1796.
[16] For selected examples, for the nanoparticles see:(a) Vasilikogiannaki, E.; Gryparis, C.; Kotzabasaki, V.; Lykakis, I. N.; Stratakis, M. Adv. Synth. Catal. 2013, 355, 907.
(b) Metin, Ö.; Mendoza-Garcia, A.; Dalmizrak, D.; Gültekin, M. S.; Sun, S. Catal. Sci. Technol. 2016, 6, 6137.
(c) Lara, P.; Philippot, K.; Suárez, A. ChemCatChem 2019, 11, 766.
[17] Allwood, B. L.; Shahriari-Zavareh, H.; Stoddart, J. F.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1984, 1461.
[18] Li, S.; Li, G.; Meng, W.; Du, H. J. Am. Chem. Soc. 2016, 138, 12956.
[19] Li, S.; Meng, W.; Du, H. Org. Lett. 2017, 19, 2604.
[20] Zhao, W.; Feng, X.; Yang, J.; Du, H. Tetrahedron Lett. 2019, 60, 1193.
[21] Zhou, Q.; Meng, W.; Yang, J.; Du, H. Angew. Chem., Int. Ed. 2018, 57, 12111.
[22] Xie, J. H.; Zhu, S. F.; Zhou, Q. L. Chem. Rev. 2011, 111, 1713.
[23] Xie, J. H.; Zhu, S. F.; Zhou, Q. L. Chem. Soc. Rev. 2012, 41, 4126.
[24] Ye, J.; Wang, C.; Chen, L.; Wu, X.; Zhou, L.; Sun, J. Adv. Synth. Catal. 2016, 358, 1042.
[25] Malkov, A. V.; Stoncius, S.; Vrankova, K.; Arndt, M.; Kocovský; P. Chem.-Eur. J. 2008, 14, 8082.
[26] Yu, W.; Du, Y.; Zhao, K. Org. Lett. 2009, 11, 2417.
[27] Sun, P.; Zhang, Y. Synth. Commun. 1997, 27, 3175.
[28] Leon, M. A.; Liu, X.; Phan, J. H.; Clift, M. D. Eur. J. Org. Chem. 2016, 4508.
[29] Wu, M.; Jiang, Y.; An, Z.; Qi, Z.; Yan, R. Adv. Synth. Catal. 2018, 360, 4236.
[30] Aniguchi, T.; Goto, N.; Ishibashi, H. Tetrahedron Lett. 2009, 50, 4857.
[31] Poisson, T.; Gembus, V.; Oudeyer, S.; Marsais, F.; Levacher, V. J. Org. Chem. 2009, 74, 3516.

文章导航

/