基于手性氨硼烷的β-烯胺腈不对称转移氢化反应
收稿日期: 2019-04-30
修回日期: 2019-06-06
网络出版日期: 2019-06-12
基金资助
国家自然科学基金(Nos.21825108,91856103)资助项目.
Asymmetric Transfer Hydrogenations of β-Enamine Cyanide with Chiral Ammonia Borane
Received date: 2019-04-30
Revised date: 2019-06-06
Online published: 2019-06-12
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21825108, 91856103).
周启文 , 冯向青 , 杨晶 , 杜海峰 . 基于手性氨硼烷的β-烯胺腈不对称转移氢化反应[J]. 有机化学, 2019 , 39(8) : 2188 -2195 . DOI: 10.6023/cjoc201904079
The asymmetric transfer hydrogenation represents one important class of reactions for the synthesis of optically active compounds. A chiral ammonia borane was generated in situ from an H2 release reaction between chiral phosphoric acid and ammonia borane, which could be regenerated by the assistance of water after the hydrogen transfer process and made this reaction catalytic. With this chiral ammonia borane, asymmetric transfer hydrogenations of β-enamine cyanides were realized to afford the desired products in 48%~98% yields with 61%~95% ee.
[1] For selected reviews, see:(a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.
(b) Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.
(c) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
(d) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443.
(e) Zhang, Z.; Butt, N. A.; Zhang, W. Chem. Rev. 2016, 116, 14769.
[2] Hantzsch, A. Justus Liebigs Ann. Chem. 1882, 215, 1.
[3] Mumm, O.; Diederichsen, J. Justus Liebigs Ann. Chem. 1839, 538, 195.
[4] Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, 5th ed., W. H. Freeman and Company, New York, 2002.
[5] (a) Ouellet, S. G.; Walji, A. M.; MacMillan, D. W. C. Acc. Chem. Res. 2007, 40, 1327.
(b) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498.
(c) McSkimming, A.; Colbran, S. B. Chem. Soc. Rev. 2013, 42, 5439.
(d) Phillips, A. M. F.; Pombeiro, A. J. L. Org. Biomol. Chem. 2017, 15, 2307.
[6] (a) Shore, S. G.; Parry, R. W. J. Am. Chem. Soc. 1955, 77, 6084.
(b) Stephens, F. H.; Pons, V.; Baker, R. T. Dalton Trans. 2007, 2613.
(c) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079.
[7] (a) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009, 38, 279.
(b) Marder, T. B. Angew. Chem., Int. Ed. 2007, 46, 8116.
(c) Gutowska, A.; Li, L.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Angew. Chem., Int. Ed. 2005, 44, 3578.
(d) Grochala, W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283.
[8] Yang, X.; Zhao, L.; Fox, T.; Wang, Z.-X.; Berke, H. Angew. Chem., Int. Ed. 2010, 49, 2058.
[9] Yang, X.; Fox, T.; Berke, H. Chem. Commun. 2011, 47, 2053.
[10] Yang, X.; Fox, T.; Berke, H. Org. Biomol. Chem. 2012, 10, 852.
[11] Yang, X.; Fox, T.; Berke, H. Tetrahedron 2011, 67, 7121.
[12] Xu, W.; Fan, H.; Wu, G.; Chen, P. New J. Chem. 2012, 36, 1496.
[13] Winner, L.; Ewing, W. C.; Geetharani, K.; Dellermann, T.; Jouppi, B.; Kupfer, T.; Braunschweig, H. Angew. Chem., Int. Ed. 2018, 57, 12275.
[14] For selected examples, for the metal organic catalysts see:(a) Chong, C. C.; Hirao, H.; Kinjo, R. Angew. Chem., Int. Ed. 2014, 53, 3342.
(b) Ding, F.; Zhang, Y.; Jiang, Y.; Bao, R. L.; Lin, K.; Shi, L. Chem. Commun. 2017, 53, 9262.
(c) Zhou, Q.; Zhang, L.; Yang, J.; Du, H. Org. Lett. 2016, 18, 5189.
[15] For selected examples, for the metal catalysts see:(a) Fu, S.; Chen, N.-Y.; Liu, X.; Shao, Z.; Luo, S.-P.; Liu, Q. J. Am. Chem. Soc. 2016, 138, 8588.
(b) Shao, Z.; Fu, S.; Wei, M.; Zhou, S.; Liu, Q. Angew. Chem., Int. Ed. 2016, 55, 1463.
(c) Das, M.; Kaicharla, T.; Teichert, J. F. Org. Lett. 2018, 20, 4926.
(d) Ménard, G.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 1796.
[16] For selected examples, for the nanoparticles see:(a) Vasilikogiannaki, E.; Gryparis, C.; Kotzabasaki, V.; Lykakis, I. N.; Stratakis, M. Adv. Synth. Catal. 2013, 355, 907.
(b) Metin, Ö.; Mendoza-Garcia, A.; Dalmizrak, D.; Gültekin, M. S.; Sun, S. Catal. Sci. Technol. 2016, 6, 6137.
(c) Lara, P.; Philippot, K.; Suárez, A. ChemCatChem 2019, 11, 766.
[17] Allwood, B. L.; Shahriari-Zavareh, H.; Stoddart, J. F.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1984, 1461.
[18] Li, S.; Li, G.; Meng, W.; Du, H. J. Am. Chem. Soc. 2016, 138, 12956.
[19] Li, S.; Meng, W.; Du, H. Org. Lett. 2017, 19, 2604.
[20] Zhao, W.; Feng, X.; Yang, J.; Du, H. Tetrahedron Lett. 2019, 60, 1193.
[21] Zhou, Q.; Meng, W.; Yang, J.; Du, H. Angew. Chem., Int. Ed. 2018, 57, 12111.
[22] Xie, J. H.; Zhu, S. F.; Zhou, Q. L. Chem. Rev. 2011, 111, 1713.
[23] Xie, J. H.; Zhu, S. F.; Zhou, Q. L. Chem. Soc. Rev. 2012, 41, 4126.
[24] Ye, J.; Wang, C.; Chen, L.; Wu, X.; Zhou, L.; Sun, J. Adv. Synth. Catal. 2016, 358, 1042.
[25] Malkov, A. V.; Stoncius, S.; Vrankova, K.; Arndt, M.; Kocovský; P. Chem.-Eur. J. 2008, 14, 8082.
[26] Yu, W.; Du, Y.; Zhao, K. Org. Lett. 2009, 11, 2417.
[27] Sun, P.; Zhang, Y. Synth. Commun. 1997, 27, 3175.
[28] Leon, M. A.; Liu, X.; Phan, J. H.; Clift, M. D. Eur. J. Org. Chem. 2016, 4508.
[29] Wu, M.; Jiang, Y.; An, Z.; Qi, Z.; Yan, R. Adv. Synth. Catal. 2018, 360, 4236.
[30] Aniguchi, T.; Goto, N.; Ishibashi, H. Tetrahedron Lett. 2009, 50, 4857.
[31] Poisson, T.; Gembus, V.; Oudeyer, S.; Marsais, F.; Levacher, V. J. Org. Chem. 2009, 74, 3516.
/
〈 |
|
〉 |