综述与进展

导向基团辅助过渡金属催化间位碳氢官能化研究进展

  • 吴梅 ,
  • 黄新平 ,
  • 张海兵 ,
  • 李鹏飞
展开
  • a中国石油大学(北京)克拉玛依校区 重质油国家重点实验室 新疆克拉玛依 834000
    b 中石油克拉玛依石化有限责任公司 新疆克拉玛依 834000

收稿日期: 2019-03-15

  网络出版日期: 2019-06-19

基金资助

中国石油大学(北京)克拉玛依校区科研启动(RCYJ2016B-03-003)

Advances on Directing-Group Assisted meta-C-H Functionalization Catalyzed by Transition Metal

  • Mei Wu ,
  • Xinping Huang ,
  • Haibing Zhang ,
  • Pengfei Li
Expand
  • a State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing At Karamay, Karamay, Xingjiang 834000
    b Petrochina Karamay Petrochemical CO. LTD, Karamay, Xingjiang 834000

Received date: 2019-03-15

  Online published: 2019-06-19

Supported by

the Science Foundation of China University of Petroleum-Beijing at Karamay(RCYJ2016B-03-003)

摘要

碳氢键活化是目前非常活跃的研究领域之一,然而实现碳氢键位点选择性活化是该领域面临的挑战之一.以辅助基团作为导向基,实现碳氢键间位活化引起了众多学者的极大关注,经常采用的策略包括模板导向、降冰片烯介导和配体的次级效应.对近年来通过导向基团进行的间位碳氢键活化的研究进行了详细的综述,总结了目前存在的问题,并对今后的发展方向进行了展望.

本文引用格式

吴梅 , 黄新平 , 张海兵 , 李鹏飞 . 导向基团辅助过渡金属催化间位碳氢官能化研究进展[J]. 有机化学, 2019 , 39(11) : 3114 -3131 . DOI: 10.6023/cjoc201903029

Abstract

Transition-metal-catalyzed functionalization of unactivated C-H bonds is a highly attractive strategy for the synthesis of organic molecules, however, regioselective control is a central challenge in this field. The directing group assisted C-H functionalizations such as the use of directing templates and transient mediator, secondary interaction have attracted more attentions from researchers. The meta-C-H functionalizatioin assisted by directing groups are summarized in details. The existing problems and limitations of this field are also included. Finally, the development trend of this area is prospected.

参考文献

[1] Mkhalid I.-A.-I. Barnard J.-H. Marder T.-B. Murphy J.-M. Hartwig J.-F. Chem. Rev. 2010 110 890.
[2] Zhang Y.-H. Shi B.-F. Yu J.-Q. J. Am. Chem. Soc. 2009 131 5072.
[3] Hofmann N. Ackermann L. J. Am. Chem. Soc. 2013 135 5877.
[4] Madalina T.-M. Genov G.-R. Phipps R.-J. Chem. Soc. Rev. 2018 47 149.
[5] Dey A. Sinha S.-K. Achar T.-K. Maiti D. Angew. Chem., Int. Ed. 2019 58 2.
[6] Yang J. Org. Biomol. Chem. 2015 13 1930.
[7] Chen Z.-K. Wang B.-J. Zhang J.-T. Yu W.-L. Liu Z.-X. Zhang Y.-H. Org. Chem. Front. 2015 2 1107.
[8] Leow D. Li G. Mei T.-S. Yu J.-Q. Nature 2012 486 518.
[9] Yang Y.-F. Cheng G.-J. Liu P. Leow D. Sun T.-Y. Chen P. Zhang X.-H. Yu J.-Q. Wu Y.-D. Houk K. N. J. Am. Chem. Soc. 2014 136 344.
[10] Lee S. Lee H. Tan K. L. J. Am. Chem. Soc. 2013 135 18778.
[11] Yang G.-Q. Lindovska P. Zhu D.-J. Kim J. Wang P. Tang R.-Y. Movassaghi M. Yu J.-Q. J. Am. Chem. Soc. 2014 136 10807.
[12] Mi R.-J. Sun J. K?hn F.-T. Zhou M.-D. Xu Z.-Q. Chem. Commun. 2017 53 1320.
[13] Mi R.-J. Sun Y.-Z. Wang J.-Y. Sun J. Xu Z.-Q. Zhou M.-D. Org. Lett. 2018 20 5126.
[14] Cheng G.-J. Yang Y.-F. Liu F. Chen P. Sun T.-Y. Li G. Zhang X.-H. HouK K.-N. Yu J.-Q. Wu Y.-D. J. Am. Chem. Soc. 2014 136 897.
[15] Dai H.-X. Li G. Zhang X.-G. Stepan A.-F. Yu J.-Q. J. Am. Chem. Soc. 2013 135 7567.
[16] Wan L. Dastbaravardeh N. Li G. Yu J.-Q. J. Am. Chem. Soc. 2013 135 18056.
[17] Deng Y.-Q. Yu J.-Q. Angew. Chem., Int. Ed. 2015 54 888.
[18] Xu H.-J. Lu Y. Farmer M.-E. Wang H.-W. Zhao D. Kang Y.-S. Sun W.-Y. Yu J.-Q. J. Am. Chem. Soc. 2017 139 2200.
[19] Xu H.-J. Kang Y.-S. Shi H. Zhang P. Chen Y.-K. Zhang B. Liu Z.-Q. Zhao J. Sun W.-Y. Yu J.-Q. Lu Y. J. Am. Chem. Soc. 2019 141 76.
[20] Bera M. Modak A. Patra T. Maji A. Maiti D. Org. Lett. 2014 16 5760.
[21] Bera M. Maji A. Sahoo S.-K. Maiti D. Angew. Chem., Int. Ed. 2015 54 8515.
[22] Maji A. Bhaskararao B. Singha S. Sunoj R.-B. Maiti D. Chem. Sci. 2016 7 3147.
[23] Modak A. Mondal A. Watile R. Mukherjee S. Maiti D. Chem. Commun. 2016 52 13916.
[24] Bera M. Agasti S. Chowdhury R. Mondal R. Pal D. Maiti D. Angew. Chem., Int. Ed. 2017 56 5272.
[25] Modak A. Patra T. Chowdhury R. Raul S. Maiti D. Organometallics 2017 36 2418.
[26] Bera M. Sahoo S.-K. Maiti D. ACS Catal. 2016 6 3575.
[27] Patra T. Watile R. Agasti S. Naveen T. Maiti D. Chem. Commun. 2016 52 2027.
[28] Maity S. Hoque E. Dhawa U. Maiti D. Chem. Commun. 2016 52 14003.
[29] Zhang L.-L. Zhao C.-Y. Liu Y. Xu J.-C. Xu X.-F. Jin Z. Angew. Chem., Int. Ed. 2017 56 12245.
[30] Tang R.-Y. Li G. Yu J.-Q. NATURE 2014 507 215.
[31] Li S.-D. Ji H.-F. Cai L. Li G. Chem. Sci. 2015 6 5595.
[32] Li S.-D. Cai L. Ji H.-F. Yang L. Li G. Nat. Commun. 2016 7 1.
[33] Fang L.-Z. Saint-Denis T.-G. Taylor B.-L. Ahlquist S. Hong K. Liu S.-S. Han L.-L. Houk K.-N. Yu J.-Q. J. Am. Chem. Soc. 2017 139 10702.
[34] Yang L. Fu L. Li G. Adv. Synth. Catal. 2017 359 2235.
[35] Xu J.-C. Chen J.-J. Gao F. Xie S.-G. Xu X. H. Jin Z. Yu J.-Q. J. Am. Chem. Soc. 2019 141 1903.
[36] Wang B. Zhou Y. Xu N.-N. Xu X.-F. Xu X.-H. Jin Z. Org. Lett. 2019 21 1885.
[37] Chu L. Shang M. Tanaka K. Chen Q.-H. Pissarnitski N. Streckfuss E. Yu J.-Q. ACS Cent. Sci. 2015 1 394.
[38] Jin Z. Chu L. Chen Y.-Q. Yu J.-Q. Org. Lett. 2018 20 425.
[39] Bag S. Jayarajan R. Mondal R. Maiti D. Angew. Chem., Int. Ed. 2017 56 3182.
[40] Bag S. Jayarajan R. Dutta U. Chowdhury R. Mondal R. Maiti D. Angew. Chem., Int. Ed. 2017 56 12538.
[41] Jayarajan R. Das J. Bag S. Chowdhury R. Maiti D. Angew. Chem., Int. Ed. 2018 57 7659.
[42] Fang S.-Q. Wang X.-B. Yin F.-C. Cai P. Yang H.-L. Kong L.-Y. Org. Lett. 2019 21 1841.
[43] Dutta U. Modak A. Bhaskararao B. Bera M. Bag S. Mondal A. Lupton D.-W. Sunoj R.-B. Maiti D. ACS Catal. 2017 7 3162.
[44] Wang X.-C. Gong W. Fang L.-Z. Zhu R.-Y. Li S.-H. Engle K.-N. Yu J.-Q. Nature 2015 519 334.
[45] Shen P.-X. Wang X.-C. Wang P. Zhu R.-Y. Yu J.-Q. J. Am. Chem. Soc. 2015 137 11574.
[46] Han J. Zhang L. Zhu Y. Zheng Y.-X. Chen X.-L. Huang Z.-B. Shi D.-Q. Zhao Y.-S. Chem. Commun. 2016 52 6903.
[47] Dong Z. Wang J.-C. Dong G.-B. J. Am. Chem. Soc. 2015 137 5887.
[48] Wang P. Li G.-C. Jain P. Farmer M.-E. He J. Shen P.-X. Yu J.-Q. J. Am. Chem. Soc. 2016 138 14092.
[49] Wang P. Farmer M.-E. Huo X. Jain P. Shen P.-X. Ishoey M. Brandner J.-E. Wisniewski S.-R. Eastgate M.-D. Yu J.-Q. J. Am. Chem. Soc. 2016 138 9269.
[50] Li G.-C. Wang P. Farmer M.-E. Yu J.-Q. Angew. Chem., Int. Ed. 2017 56 6874.
[51] Ding Q.-P. Ye S.-Q. Cheng G.-L. Wang P. Farmer M.-E. Yu J.-Q. J. Am. Chem. Soc. 2017 139 417.
[52] Wang P. Farmer M.-E. Yu J.-Q. Angew. Chem., Int. Ed. 2017 56 5125.
[53] Liu J.-Y. Ding Q.-P. Fang W.-J. Wu W.-H. Zhang Y.-G. Peng Y.-Y. J. Org. Chem. 2018 83 13211.
[54] Cheng G.-L. Wang P. Yu J.-Q. Angew. Chem., Int. Ed. 2017 56 8183.
[55] Li Q.-K. Ferreira E. M. Chem.-Eur. J. 2017 23 11519.
[56] Farmer M.-E. Wang P. Shi H. Yu J.-Q. ACS Catal. 2018 8 7362.
[57] Kuninobu Y. Ida H. Nishi M. Kanai M. Nat. Chem. 2015 7 712.
[58] Lu X. Yoshigoe Y. Ida H. Nishi M. Kanai M. Kuninobu Y. ACS Catal. 2019 9 1705.
[59] Unnikrishnan A. Sunoj R.-B. Chem. Sci. 2019 10 3826.
[60] Yang L.-C. Uemura N. Nakao Y. J. Am. Chem. Soc. 2019 141 7912.
[61] Bisht R. Chattopadhyay B. J. Am. Chem. Soc. 2016 138 84.
[62] Davis H.-J. Mihai M.-T. Phipps R.-J. J. Am. Chem. Soc. 2016 138 12759.
[63] Davis H.-J. Genov G.-R. Phipps R.-J. .Angew. Chem., Int. Ed. 2017 56 13351.
[64] Bisht R. Hoque M.-E. Chattopadhyay B. Angew. Chem., Int. Ed. 2018 57 15762.
文章导航

/