研究论文

4-二甲氨基吡啶促进的一锅法合成高选择性螺环丙烷吡唑啉酮衍生物

  • 梁杰 ,
  • 马会芳 ,
  • 阿布拉江·克依木
展开
  • 新疆大学化学化工学院 石油天然气精细化工教育部&新疆维吾尔自治区重点实验室 乌鲁木齐 830046

收稿日期: 2019-04-10

  网络出版日期: 2019-07-09

基金资助

国家自然科学基金(21961038);国家自然科学基金(21462041)

High-Selective One-Pot Synthesis of Spirocyclopropane Pyrazolones Promoted by 4-Dimethylaminopyridine

  • Jie Liang ,
  • Huifang Ma ,
  • Keyume Ablajan
Expand
  • Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046

Received date: 2019-04-10

  Online published: 2019-07-09

Supported by

the National Natural Science Foundation of Chin(21961038);the National Natural Science Foundation of Chin(21462041)

摘要

发展了一种4-二甲氨基吡啶(DMAP)促进的高立体选择性合成多取代螺环丙烷吡唑啉酮的方法.该反应以吡唑啉酮、芳醛和溴乙酸酯为原料,DMAP作为碱,经三组分一锅反应,合成一系列收率高且非对映选择性好的目标化合物.该反应具有操作简单、产率高以及非对映选择性好等优点.该合成方法对于螺环丙烷的研究具有重要的价值.

本文引用格式

梁杰 , 马会芳 , 阿布拉江·克依木 . 4-二甲氨基吡啶促进的一锅法合成高选择性螺环丙烷吡唑啉酮衍生物[J]. 有机化学, 2019 , 39(11) : 3169 -3175 . DOI: 10.6023/cjoc201904028

Abstract

A 4-dimethylaminopyridine (DMAP)-promoted high stereoselectivity method for the synthesis of polysubstituted spiropropane pyrazolone was developed. A series of target compounds were synthesized from using pyrazolone, aromatic aldehyde and bromoacetate as raw materials, and DMAP as a base with high yield via three-component one-pot reaction. This reaction has the advantages of simple operation, high yield and good diastereotopic selectivity. In addition, this synthetic method is of great value for the study of spiropropane.

参考文献

[1] (a) Kinder, F. R. J.; Wang, R.-M.; Bauta, W. E.; Bair, K. W. M. Bioorg. Med. Chem. Lett. 1996, 6, 1029.
[1] (b) Wessjohann, L. A.; Brandt, W. Chem. Rev. 2003, 103, 1625.
[1] (c) Chen, D. Y.-K.; Pouwer, R. H.; Richard, J.-A. Chem. Soc. Rev. 2012, 41, 4631.
[1] (d) Djerassi, C.; Doss, G. A. New J. Chem. 1990, 14, 713.
[1] (e) Donaldson, W. A. Tetrahedron 2001, 57, 8589.
[1] (f) Faust, R. Angew. Chem. 2001, 113, 2312.
[1] (g) Qian, P.; Du, B. G.; Song, R. C.; Wu, X. D.; Mei, H. B.; Han, J. L.; Pan, Y. J. Org. Chem. 2016, 81, 6546.
[2] Sampson P. B. Liu Y. Patel N. K. Feher M. Forrest B. J. Med. Chem. 2015 58 130.
[3] Sahlberg C. Engelhardt P. J. Med. Chem. 1999 42 4150.
[4] McMorris T. C. Kelner M. J. Wang W. Yu J. Estes L. A. Taetle R. J. Nat. Prod. 1996 59 896.
[5] (a) Cordero, F. M.; Pisaneschi, F.; Salvati, M.; Paschetta, V.; Ollivier, J.; Salaun, J.; Brandi, A. J. Org. Chem. 2003, 68, 3271.
[5] (b) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811.
[6] (a) Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977.
[6] (b) Kulinkovich, O. G.; Meijere, D. A. Chem. Rev. 2000, 100, 2789.
[6] (c) Mukherjee, P.; Das, A. R. J. Org. Chem. 2017, 82, 2794.
[7] Papageorgiou C. D. Cubillo de Dios M. A. Ley S. V. Gaunt M. J. Angew. Chem. Int. Ed. 2004 43 4641.
[8] (a) Sun, X. L.; Tang, Y. Acc. Chem. Res. 2008, 41, 937.
[8] (b) Kakei, H.; Sone, T.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 13410.
[8] (c) Wang, J.; Liu, X. H.; Dong, S. X.; Lin, L. L.; Feng, X. M. J. Org. Chem. 2013, 78, 6322.
[8] (d) Guo, J.; Liu, Y. B.; Li, X. Q.; Liu, X. H.; Lin, L. L.; Feng, X. M. Chem. Sci. 2016, 7, 2717.
[9] (a) Sawada, T.; Nakada, M. Org. Lett. 2013, 15, 1004.
[9] (b) Lindsay; V. N. G.; Nicolas, C.; Charette, A. B. J. Am. Chem. Soc. 2011, 133, 8972.
[9] (c) Xu, X.; Zhu, S.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem. 2013, 125, 12073.
[9] (d) Xu, Z.-H.; Zhu, S.-N.; Sun, X.-L.; Tang, Y.; Dai, L.-X. Chem. Commun. 2007, 38, 1960.
[10] (a) Arai, S.; Nakayama, K.; Hatano, K.; Shioiri, T. J. Org. Chem. 1998, 63, 9572.
[10] (b) Miyagawa, T.; Tatenuma, T.; Tadokoro, M.; Satoh, T. Tetrahedron, 2008, 64, 5279.
[11] (a) Newcomb, E. T.; Ferreira, E. M. Org. Lett. 2013, 15, 1772.
[11] (b) Robinson, A.; Aggarwal, V. K. Angew. Chem. 2010, 122, 6823.
[12] Yuan Z.-B. Fang X.-X. Li X.-Y. Wu J. Yao H.-Q. Lin A.-J. J. Org. Chem. 2015 80 1112.
[13] Pyne S. G. Dong Z. Skelton B. W. White A. H. J. Org. Chem. 1997 62 2337.
[14] Hanessian S. Andreotti D. Gomtsyan A. J. Am. Chem. Soc. 1995 117 10393.
[15] Kimber M. C. Taylor D. K. J. Org. Chem. 2002 67 3142.
[16] Avery T. D. Jenkins N. F. Kimber M. C. Lupton D. W. Taylor D. K. Chem. Commun. 2002 33 28.
[17] Wang Q. Song X. K. Chen J. Yan C. G. J. Comb. Chem. 2009 11 1007.
[18] O?eka M. Noole A. ?ari S. ?eren M. J?rving I. Lopp M. Kanger T. Eur. J. Org. Chem. 2014 17 3599.
[19] Ren Z. J. Cao W. G. Tong W. Q. Chen J. Deng H. M. Wu D. Y. Synth. Commun. 2008 38 2200.
[20] Ren Z. J. Cao W. G. Chen J. Chen Y. L. Deng H. M. Shao M. Wu D. Y. Tetrahedron 2008 64 5156.
[21] Li J. H. Feng T. F. Du D. M. J. Org. Chem. 2015 80 11369.
[22] (a) Ablajan, K.; Zeynepgul, E.; Wang, L. J.; Feng, J. Tetrahedron 2014, 70, 3976.
[22] (b) Wang, L. J.; Ablajan, K.; Feng, J. Ultrason. Sonochem. 2015, 22, 113.
[22] (c) Li, W. B.; Reyhangul, R.; Ablajan, K.; Zulpiya, G. Tetrahedron 2017, 73, 164.
[23] (a) Khan, A.; Lal, M.; Sidick Basha, R. Synthesis 2013, 45, 406.
[23] (b) Wang, Q.-F.; Hou, H.; Hui, L.; Yan, C.-G. J. Org. Chem. 2009, 74, 7403.
[23] (c) Chuang, C.-P.; Chen, K.-P. Tetrahedron 2012, 68, 1401.
文章导航

/