研究论文

在水相中钯催化氧化偶氮苯的区域选择性邻位酰基化反应

  • 陈晓培 ,
  • 马志伟 ,
  • 王川川 ,
  • 刘俊桃 ,
  • 吴金松
展开
  • 河南牧业经济学院理学部 郑州 450046 Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou 450046

收稿日期: 2019-05-09

  网络出版日期: 2019-07-09

基金资助

河南省高等学校重点科研项目计划(20A150019);河南牧业经济学院博士科研启动资金(53000168)

Palladium-Catalyzed Regioselective ortho-Acylation of Azoxybenzenes under Aqueous Conditions

  • Xiaopei Chen ,
  • Zhiwei Ma ,
  • Chuanchuan Wang ,
  • Juntao Liu ,
  • Jinsong Wu
Expand

Received date: 2019-05-09

  Online published: 2019-07-09

Supported by

the Key Scientific Research Project for Colleges and Universities of Henan Province(20A150019);the Doctoral Research Startup Fund of Henan University of Animal Husbandry and Economy(53000168)

摘要

以醇为酰基化试剂,在水溶液条件下,发展了一种简便、高效的钯催化氧化偶氮苯酰基化反应体系.在此体系中,醇被氧化为醛,实现氧化偶氮苯的邻位酰基化反应,具有很好的区域选择性,以中等到较高收率得到酰基化的氧化偶氮苯衍生物,底物的普适性较好.

本文引用格式

陈晓培 , 马志伟 , 王川川 , 刘俊桃 , 吴金松 . 在水相中钯催化氧化偶氮苯的区域选择性邻位酰基化反应[J]. 有机化学, 2019 , 39(11) : 3176 -3182 . DOI: 10.6023/cjoc201905017

Abstract

A facile and efficient protocol for palladium-catalyzed ortho-acylation of azoxybenzenes has been developed under aqueous conditions. In this process, the alcohols were oxidized into the corresponding aldehydes in situ, which coupled with azoxybenzenes with excellent regioselectivity, affording the acylated azoxybenzenes in moderate to good yields. A variety of functional groups were tolerated in this procedure.

参考文献

[1] (a) Surburg, H.; Panten, J. Common Fragrance and Flavour Materials, Wiley Online Library, 2006.
[1] (b) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
[2] (a) Olah, G. A. Friedel-Crafts Chemistry, Wiley, New York, 1973.
[2] (b) Sartori, G.; Maggi, R. Chem. Rev. 2006, 106, 1077.
[2] (c) Fernandez, M.; Tojo, G. In Oxidation of Alcohols to Aldehydes and Ketones: A Guideto Current Common Practice, Ed.: Tojo, E., Springer, New York, 2006.
[2] (d) Sartori, G.; Maggi, R. Advances in Friedel-Crafts Acylation Reactions, CRC Press, Taylor & Francis Group, 2010.
[3] (a) Moore, E. J.; Pretzer, W. R.; O'Connell, T. J.; Harris, J.; LaBounty, L.; Chou, L.; Grimmer, S. S. J. Am. Chem. Soc. 1992, 114, 5888.
[3] (b) Chatani, N.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1996, 118, 493.
[3] (c) Fukuyama, T.; Chatani, N.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1997, 62, 5647.
[3] (d) Chatani, N.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1997, 62, 2604.
[3] (e) Ie, Y.; Chatani, N.; Ogo, T.; Marshall, D. R.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Org. Chem. 2000, 65, 1475.
[4] Moore E. J. Pretzer W. R. OConnell T. J. Harris J. LaBounty L. Chou L. Grimme S. S. J. Am. Chem. Soc. 1992 114 5888.
[5] Jia X. F. Zhang S. H. Wang W. H. Luo F. Cheng J. Org. Lett. 2009 11 3120.
[6] (a) Xiao, F. X.; Shuai, Q.; Zhao, F.; Basle, O.; Deng, G. J.; Li, C. J. Org. Lett. 2011, 13, 1614.
[6] (b) Xu, Z. P.; Xiang, B.; Sun, P. P. RSC Adv. 2013, 3, 1679.
[6] (c) Khemnar, A. B.; Bhanage, B. M. Eur. J. Org. Chem. 2014, 6746.
[6] (d) Kishore, R.; Kantam, M. L.; Yadav, J.; Sudhakar, M.; Laha, S.; Venugopal, A. J. Mol. Catal. A: Chem. 2013, 379, 213.
[6] (e) Zhang, Q.; Yang, F.; Wu, Y. J. Chem. Commun. 2013, 49, 6837.
[6] (f) Li, M. Z.; Ge, H. B. Org. Lett. 2010, 12, 3464.
[7] (a) Han, S.; Sharma, S.; Park, J.; Kim, M.; Shin, Y.; Mishra, N. K.; Bae, J. J.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. J. Org. Chem. 2014, 79, 275.
[7] (b) Sharma, S.; Kim, M.; Park, J.; Kim, M.; Kwak, J. H.; Jung, Y. H.; Oh, J. S.; Lee, Y.; Kim, I. S. Eur. J. Org. Chem. 2013, 6656.
[8] Wu Y. N. Feng L. J. Lu X. Kwong F. Y. Luo H. B. Chem. Commun. 2014 50 15352.
[9] (a) Weng, J. Q.; Yu, Z. Q.; Liu, X. H.; Zhang, G. F. Tetrahedron Lett. 2013, 54, 1205.
[9] (b) Fang, P.; Li, M. Z.; Ge, H. B. J. Am. Chem. Soc. 2010, 132, 11898.
[9] (c) Yin, Z. W.; Sun, P. P. J. Org. Chem. 2012, 77, 11339.
[9] (d) Li, C. L.; Wang, L.; Li, P. H.; Zhou, W. Chem.-Eur. J. 2011, 17, 10208.
[9] (e) Wu, Y. N.; Choy, P. Y.; Mao, F.; Kwong, F. Y. Chem. Commun. 2013, 49, 689.
[10] Yang Y. Z. Chen L. Zhang Z. G. Zhang Y. H. Org. Lett. 2011 13 1342.
[11] (a) Song, H. Y.; Chen, D.; Pi, C.; Cui, X. L.; Wu, Y. J. J. Org. Chem. 2014, 79, 2955.
[11] (b) Li, H. J.; Li, P. H.; Wang, L. Org. Lett. 2013, 15, 620.
[11] (c) Li, H. J.; Li, P. H.; Tan, H.; Wang, L. Chem.-Eur. J. 2013, 19, 14432.
[11] (d) Li, Z. Y.; Li, D. D.; Wang, G. W. J. Org. Chem. 2013, 78, 10414.
[11] (e) Xiong, F.; Qian, C.; Lin, D. G.; Zeng, W.; Lu, X. X. Org. Lett. 2013, 15, 5444.
[12] Zhao J. C. Fang H. Xie C. Han J. L. Li G. G. Pan Y. Asian J. Org. Chem. 2013 2 1044.
[13] (a) Ikeda, T.; Tsu, O. Science 1995, 268, 1873.
[13] (b) Kimura, K.; Suzuki, T.; Yokoyama, M. J. Phys. Chem. 1990, 94, 6090.
[13] (c) Campbell, D.; Dix, L. R.; Rostron, P. Dyes Pigm. 1995, 29, 77.
[13] (d) Huang, J. M.; Kuo, J. F.; Chen, C. Y. J. Appl. Polym. Sci. 1995, 55, 1217.
[13] (e) Lee, H. K.; Kanazawa, A.; Shiono, T.; Ikeda, T.; Fujisawa, T.; Aizawa, M.; Lee, B. Chem. Mater. 1998, 10, 1402.
[13] (f) Li, H. J.; Li, P. H.; Zhao, Q.; Wang, L. Chem. Commun. 2013, 49, 9170.
[14] For selected examples, see: (a) Hou, Z.; Fujiware, Y.; Taniguchi, H. J. Org. Chem. 1988, 53, 3118.
[14] (b) Sakai, N.; Fuji, K.; Nabeshima, S.; Ikeda, R.; Konakahara, T. Chem. Commun. 2010, 46, 3173.
[14] (c) Wada, S.; Urano, M.; Suzuki, H. J. Org. Chem. 2002, 67, 8254.
[14] (d) Wang, Y.; Cheng, G. L.; Cui, X. L. Chin. J. Org. Chem. 2012, 32, 2018 (in Chinese).
[14] (王勇, 程国林, 崔秀灵, 有机化学, 2012, 32, 2018.)
[15] (a) Sun, M.; Hou, L. K.; Chen, X. X.; Yang, X. J.; Sun, W.; Zang, Y. S. Adv. Synth. Catal. 2014, 356, 3789.
[15] (b) Li, H. J.; Li, P. H.; Zhao, Q.; Wang, L. Chem. Commun. 2013, 49, 9170.
[15] (c) Yi, M. L.; Cui, X. L.; Zhu, C. W.; Pi, C.; Zhu, W. M.; Wu, Y. J. Asian J. Org. Chem. 2015, 4, 38.
[15] (d) Hou, L. K.; Chen, X. X.; Li, S.; Cai, S. X.; Zhao, Y. X.; Sun, M.; Yang, X. J. Org. Biomol. Chem., 2015, 13, 4160.
[16] (a) Yang, J.; Fu, T.; Long, Y.; Zhou, X. G. Chin. J. Org. Chem. 2017, 37, 1111 (in Chinese).
[16] (杨军, 付婷, 龙洋, 周向葛, 有机化学, 2017, 37, 1111.)
[16] (b) Zhou, Z.; Duan, J. F.; Mu, X. J.; Xiao, S. Y. Chin. J. Org. Chem. 2018, 38, 585 (in Chinese).
[16] (周曌, 段建凤, 穆小静, 肖尚友, 有机化学, 2018, 38, 585.)
[16] (c) Qin, H. F.; Li, X. R. Chin. J. Org. Chem. 1992, 12, 309 (in Chinese).
[16] (秦合法, 李萱荣, 有机化学, 1992, 12, 309.)
[17] (a) Szabó, F.; Daru, J.; Simkó, D.; Nagy, T. Z.; Stirling, A.; Novák, Z. Adv. Synth. Catal. 2013, 355, 685.
[17] (b) Szabó, F.; Simkó, D.; Novák, Z. RSC Adv. 2014, 4, 3883.
[17] (c) Xiao, F. H.; Chen, S. Q.; Huang, H. W.; Deng, G. J. Eur. J. Org. Chem. 2015, 7919.
[18] Zhang D. Cui X. L. Yang F. F. Q. Zhang Q. Q. Zhu Y. Wu Y. J. Org. Chem. Front. 2015 2 951.
[19] (a) Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 9488.
[19] (b) Xu, L. M.; Li, B. J.; Yang, Z.; Shi, Z. J. Chem. Soc. Rev. 2010, 39, 712.
[19] (c) Sibbald, P. A.; Rosewall, C. F.; Swartz, R. D.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 15945.
[19] (d) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302.
[19] (e) Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 17050.
[19] (f) Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234.
[19] (g) Racowski, J. M.; Dick, A. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 10974.
[20] Christin G. Beate P. Elisabeth I. Karola R. B. Synthesis 2008 1889.
文章导航

/