基于有机小分子的三磷酸腺苷荧光传感器研究进展
收稿日期: 2019-05-12
网络出版日期: 2019-07-17
基金资助
陕西省科技厅青年基金(2019JQ-504);安康市主导产业重大科研攻关(2016AKZDCY002);安康学院博士启动基金(2018AYQDZR06);农业部富硒产品开发国家地方联合工程实验室开放课题(Se-2018B02);陕西省大学生创新创业训练计划(201839032)
Recent Progress in Fluorescent Probes for Adenosine Triphosphate Based on Small Organic Molecules
Received date: 2019-05-12
Online published: 2019-07-17
Supported by
the Youth Foundation of Shaanxi Provincial Science & Technology Department(2019JQ-504);the Major Scientific Research Projects of the Leading Industry of Ankang City(2016AKZDCY002);the Doctor's Initial Funding of Ankang University(2018AYQDZR06);the Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture(Se-2018B02);the Shaanxi Provincial Innovation Experiment Program for University Students(201839032)
三磷酸腺苷(ATP)是各种活细胞内普遍存在的一种高能磷酸化合物,在能量的储存,细胞呼吸作用和酶催化反应等生物活动过程中扮演着重要作用.因此,对于ATP在生物体内的研究至关重要.荧光检测技术具有操作方便、选择性好和灵敏度高等优点,设计合成高效的ATP荧光传感器是近年来生物化学和分析化学领域的研究热点.根据ATP荧光传感器的结构特点和识别原理,将ATP荧光传感器分为金属Zn(Ⅱ)作为键合位点型识别,其它金属离子作为键合位点型识别和静电或氢键作用型识别.基于有机小分子荧光传感器,综述了近年来国内外ATP荧光传感器在分子设计与应用方面的研究进展,并展望了其发展趋势.
张继东 , 张俊 , 严瞻 , 谢娟平 . 基于有机小分子的三磷酸腺苷荧光传感器研究进展[J]. 有机化学, 2019 , 39(11) : 3051 -3064 . DOI: 10.6023/cjoc201905024
Adenosine triphosphate (ATP) is a high-energy phosphate compound commonly existing in various living cells, which plays important roles in the biological activities such as energy storage, cell respiration and enzyme catalytic reactions. Therefore, it is very crucial to ATP research in bio-organism. Fluorescence detection techniques has the advantages of convenient operation, good selectivity and high sensitivity, etc. In recent years, the design and synthesis of efficient ATP fluorescence sensors have become a research focus in the fields of biochemistry and analytical chemistry. According to the structure characteristics, ATP fluorescence chemosensors are categorized as Zn(Ⅱ) metal ions as recognition of bonding site type, other metal ions as recognition of bonding site type and electrostatic or hydrogen bond as interaction type. Based on organic small molecule fluorescence sensors, the recent progress in research of ATP fluorescence sensors in molecular design and application is reviewed, and the prospects for their development are discussed.
[1] | Knowles J. R. Annu. Rev. Biochem. 1980 49 877. |
[2] | Higgins C. F. Hiles I. D. Salmond G. P. C. Gill D. R. Downie J. A. Evans I. J. Holland I. B. Gray L. Buckel S. D. Bell A. W. Hermodson M. A. Nature 1986 323 448. |
[3] | Mishra N. S. Tuteja R. Tuteja N. Arch. Biochem. Biophys. 2006 452 55. |
[4] | Ghosh A. Shrivastav A. Jose D. A. Mishra S. K. Chandrakanth C. K. Mishra S. Das A. Anal. Chem. 2008 80 5312. |
[5] | Beyeh N. K. Diez I. Taimoory S. M. Meister D. Feig A. I. Trant J. F. Ras R. H. A. Rissanen K. Chem. Sci. 2018 9 1358. |
[6] | Gao M. Yu F. Lv C. Choo J. Chen L. Chem. Soc. Rev. 2017 46 2237. |
[7] | Umezawa K. Yoshida M. Kamiya M. Yamasoba T. Urano Y. Nat. Chem. 2017 9 279. |
[8] | You L. Zha D. Anslyn E. V. Chem. Rev. 2015 115 7840. |
[9] | Buccella D. Horowitz J. A. Lippard S. J. J. Am. Chem. Soc. 2011 133 4101. |
[10] | Zhou Y. Xu Z. Yoon J. Chem. Soc. Rev. 2011 40 2222. |
[11] | Weitz E. A. Chang J. Y. Rosenfield A. H. Pierre V. C. J. Am. Chem. Soc. 2012 134 16099. |
[12] | Lu B. Meng S. Feng Y. Chin. J. Org. Chem 2018 38 350. |
[12] | 卢 博为 孟 舒献 冯 亚青 有机化学 2018 38 350. |
[13] | Qu W. Fang H. Huang Q. Zhang Y. Lin Q. Yao H. Wei T. Chin. J. Org. Chem. 2019, 39 2019 39 1226. |
[13] | 曲 文娟 房 虎 黄 青 张 有明 林 奇 姚 虹 魏 太保 有机化学 2019 39 1126. |
[14] | Li J. Chen L. Du L. Li M. Chem. Soc. Rev. 2013 42 662. |
[15] | Fan Y. Wang S. Zhang F. Angew. Chem. Int. Ed. 2019 58 13208. |
[16] | Li M. Wang Y. Liu G. Lü H. Xing G. Chin. J. Org. Chem. 2017 37 356. |
[16] | 李 美含 王 宇童 刘 广建 吕 海娟 邢 国文 有机化学 2017 37 356. |
[17] | Kurishita Y. Kohira T. Ojida A. Hamachi I. J. Am. Chem. Soc. 2010 132 13290. |
[18] | Wu Y. Wen J. Li H. Sun S. Xu Y. Chin. Chem. Lett. 2017 28 1916. |
[19] | Ojida A. Mito-oka Y. Sada K. Hamachi I. J. Am. Chem. Soc. 2004 126 2454. |
[20] | Yamaguchi S. Yoshimura I. Kohira T. Tamaru S. Hamachi I. J. Am. Chem. Soc. 2005 127 11835. |
[21] | Ojida A. Miyahara Y. Wongkongkatep J. Tamaru S. Sada K. Hamachi T. Chem. Asian J. 2006 1 555. |
[22] | Ojida A. Nonaka H. Miyahara Y. Tamaru S. Sada K. Hamachi I. Angew. Chem. Int. Ed. 2006 45 5518. |
[23] | Jose D. A. Mishra S. Ghosh A. Shrivastav A. Mishra S. K. Das A. Org. Lett. 2007 9 1979. |
[24] | Mahato P. Ghosh A. Mishra S. K. Shrivastav A. Mishra S. Das A. Inorg. Chem. 2011 50 4162. |
[25] | Duodu E. Kraskouskaya D. Gomez-Biagi R. F. Gunning P. T. Analyst 2016 141 820. |
[26] | Butler S. J. Chem. Eur. J. 2014 20 15768. |
[27] | Minami T. Emami F. Nishiyabu R. Kubo Y. Anzenbacher P. Jr. Chem. Commun. 2016 52 7838. |
[28] | Rao A. S. Kim D. Nam H. Jo H. Kim K. H. Ban C. Ahn K. H. Chem. Commun. 2012 48 3206. |
[29] | Zhang M. Ma W. J. He C.T. Jiang L. Lu T. B. Inorg. Chem. 2013 52 4873. |
[30] | Fang W. Liu C. Yu F. Liu Y. Li Z. Chen L. Bao X. Tu T. ACS. Appl. Mater. Interfaces 2016 8 20583. |
[31] | Moro A. J. Cywinski P. J. Korsten S. Mohr G. J. Chem. Commun. 2010 46 1085. |
[32] | Xu Z. Spring D. R. Yoon J. Chem. Asian. J. 2011 6 2114. |
[33] | Xu Q. Lv H. Lv Z. Liu M. Li Y. Wang X. Zhang Y. Xing G. RSC Adv. 2014 4 47788. |
[34] | Strianese M. Milione S. Maranzana A. Grassi A. Pellecchia C. Chem. Commun. 2012 48 11419. |
[35] | Patra C. Bhanja A. K. Mahapatra A. Mishra S. Saha K. D. Sinha C. RSC Adv. 2016 6 76505. |
[36] | Kumari N. Zelder F. Chem. Commun. 2015 51 17170. |
[37] | Kataev E. Arnold R. Rüffer T. Lang H. Inorg. Chem. 2012 51 7948. |
[38] | Gao Y. G. Tang Q. Shi Y. D. Zhang Y. Lu Z. L. Talanta 2016 152 438. |
[39] | Xiao L. Sun S. Pei Z. Pei Y. Pang Y. Xu Y. Biosens. Bioelectron. 2015 65 166. |
[40] | Zhang X. Jiang Y. Xiao N. Chem. Commun. 2018 54 12812. |
[41] | Wu H. He C. Lin Z. Liu Y. Duan C. Inorg. Chem. 2009 48 408. |
[42] | Liu X. Xu J. Lv Y. Wu W. Liu W. Tang Y. Dalton. Trans. 2013 42 9840. |
[43] | Weitz E. A. Chang J. Y. Rosen?eld A. H. Pierre V. C. J. Am. Chem. Soc. 2012 134 16099. |
[44] | Shuvaev S. Fox M. A. Parker D. Angew. Chem., Int. Ed. 2018 57 7488. |
[45] | Mailhot R. Traviss-Pollard T. Pal R. Butler S. J. Chem. Eur. J. 2018 24 10745. |
[46] | Xu Z. Kim S. K. Yoon J. Chem. Soc. Rev. 2010 39 1457. |
[47] | Xu Z. Singh N. J. Lim J. Pan J. Kim H. N. Park S. Kim K. K. Yoon J. J. Am. Chem. Soc. 2009 131 15528. |
[48] | Farshbaf S. Anzenbacher P. Jr. Chem. Commun. 2019 55 1770. |
[49] | Luo J. Xie Z. Lam J. W. Y. Chen L. Chen H. Qiu C. Kwok H. S. Zhan X. Liu Y. Zhu D. Tang B. Z. Chem. Commun. 2001 1740 |
[50] | Kwok R. T. Leung C. W. Lam J. W. Tang B. Z. Chem. Soc. Rev. 2015 44 4228. |
[51] | Xu W. Lee M. M. S. Zhang Z. Sung H. H. Y. Williams I. D. Kwok R. T. K. Lam J. W. Y. Wang D. Tang B. Z. Chem. Sci. 2019 10 3494. |
[52] | Li X. Guo X. Cao L. Xun Z. Wang S. Li S. Li Y. Yang G. Angew. Chem. Int. Ed. 2014 53 7809. |
[53] | Yang Y. Wang X. Cui Q. Cao Q. Li L. ACS. Appl. Mater. Interfaces. 2016 8 7440. |
[54] | Cheng L. Zhang H. Dong Y. Zhao Y. Yu Y. Cao L. Chem. Commun. 2019 55 2372. |
[55] | Jiang G. Zhu W. Chen Q. Shi A. Wu Y. Zhang G. Li X. Li Y. Fan X. Wang J. Analyst 2017 142 4388. |
[56] | Noguchi T. Shiraki T. Dawn A. Tsuchiya Y. Lien L. T. N. Yamamoto T. Shinkai S. Chem. Commun. 2012 48 8090. |
[57] | Maity D. Li M. Ehlers M. Schmuck C. Chem. Commun. 2016 53 208. |
[58] | Tan K. Y. Li C. Y. Li Y. F. Fei J. Yang B. Fu Y. J. Li F. Anal. Chem. 2017 89 1749. |
[59] | Tang J. L. Li C. Y. Li Y. F. Zou C. X. Chem. Commun. 2014 50 15411. |
[60] | Fang Y. Shi W. Hu Y. Li X. Ma H. Chem. Commun. 2018 54 5454. |
[61] | Wang L. Yuan L. Zeng X. Peng J. Ni Y. Er J. C. Xu W. Agrawalla B. K. Su D. Kim B. Chang Y. T. Angew. Chem. Int. Ed. 2016 55 1773. |
[62] | Das S. Sarkar H. S. Uddin M. R. Rissanen K. Madal S. Sahoo P. Chem. Commun. 2017 53 7600. |
[63] | Liu Y. Lee D. Wu D. Swamy K. M. K. Yoon J. Sensors Actuators, B 2018 265 429. |
[64] | Zhang P. Zhu M. Luo H. Zhang Q. Guo L. E. Li Z. Jiang Y. B. Anal. Chem. 2017 89 6210. |
/
〈 |
|
〉 |