研究论文

γ-硝基腈合成4, 5-二氢吡咯衍生物

  • 文婷 ,
  • 康梦 ,
  • 陈战国
展开
  • 陕西师范大学化学化工学院 陕西省大分子科学重点实验室 西安 710119

收稿日期: 2019-05-14

  网络出版日期: 2019-07-17

基金资助

陕西省自然科学基金(2009JM2011)

Synthesis of 4, 5-Dihydropyrrole from γ-Nitro-nitrile

  • Ting Wen ,
  • Meng Kang ,
  • Zhanguo Chen
Expand
  • Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119

Received date: 2019-05-14

  Online published: 2019-07-17

Supported by

the Natural Science Foundation of Shaanxi Province(2009JM2011)

摘要

建立了由γ-硝基腈合成4,5-二氢吡咯衍生物的新方法.用还原铁粉和浓盐酸混合体系作为还原剂,以甲醇为溶剂,γ-硝基腈在30℃下其硝基被还原成氨基,该氨基与分子内的氰基自发地发生亲核加成反应和重排反应,形成一系列4,5-二氢吡咯杂环化合物.在优化条件下,不同结构的γ-硝基腈均能以满意的收率转变成4,5-二氢吡咯衍生物,说明该反应具有较好的普适性.根据实验结果,提出了可能的反应机理.

本文引用格式

文婷 , 康梦 , 陈战国 . 由γ-硝基腈合成4, 5-二氢吡咯衍生物[J]. 有机化学, 2019 , 39(11) : 3162 -3168 . DOI: 10.6023/cjoc201905031

Abstract

A new method for the synthesis of 4, 5-dihydropyrrole derivatives from γ-nitro-nitriles is described. In this procedure, the nitro groups of nitro-nitriles were reduced into aminoes under Fe+HCl systerm in methanol at 30℃ firstly. And then the amino-groups reacted with cyano groups to form target compounds via intramolecular nucleophilic addition reaction and rearrangement reaction. Under the optimized conditions, all γ-nitro-nitriles can be easily converted into 4, 5-dihydropyrrole derivatives in satisfactory yield. It shows that the reaction has better universality. Based on the experimental results, the possible reaction mechanism was proposed.

参考文献

[1] (a) Fattorusso, E.; Taglialatela-Scafati, O. Modern Alkaloids: Structure, Isolation, Synthesis and Biology, Wiley-VCH Verlag Gmb H & Co. K GaA, Weinheim, 2008.
[1] (b) Castellano, S.; Fiji, H. D. G.; Kinderman, S. S.; Watanabe, M.; deLeon, P.; Tamanoi, F.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 5843.
[1] (c) Carmeli, S.; Moore, R. E.; Patterson, G. M. L. Tetrahedron 1991, 47, 2087.
[1] (d) Marti, C.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 11505.
[2] (a) Katz, J. D.; Overman, L. E. Tetrahedron 2004, 60, 9559.
[2] (b) Pathak, T. P.; Sigman, M. S. Org. Lett. 2011, 13, 2774.
[2] (c) Bergner, I.; Wiebe, C.; Meyer, N.; Opatz, T. J. Org. Chem. 2009, 74, 8243.
[2] (d) Ritthiwigrom, T.; Willis, A. C.; Pyne, S. G. J. Org. Chem. 2010, 75, 815.
[2] (e) Evans, P. J. Org. Chem. 2007, 72, 1830.
[2] (f) Pichon, N.; Harrison-Marchand, A.; Mailliet, P.; Maddaluno, J. J. Org. Chem. 2004, 69, 7220.
[2] (g) Herzon, S. B.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 5342.
[2] (h) Donohoe, T. J.; Rigby, C. L.; Thomas, R. E.; Nieuwenhuys, W. F.; Bhatti, F. L.; Cowley, A. R.; Bhalay, G.; Linney, I. D. J. Org. Chem. 2006, 71, 6298.
[3] (a) Shi, F.; Luo, S.-W.; Tao, Z.-L.; He, L.; Yu, J.; Tu, S.-J.; Gong, L.-Z. Org. Lett. 2011, 13, 4680.
[3] (b) Sun, W.; Ma, X.; Hong, L.; Wang, R. J. Org. Chem. 2011, 76, 7826.
[3] (c) Sawadjoon, S.; Samec, J. S. M. Org. Biomol. Chem. 2011, 9, 2548.
[3] (d) Ishikawa, S.; Noguchi, F.; Kamimura, A. J. Org. Chem. 2010, 75, 3578.
[3] (e) Zhang, Y.; Raines, A. J.; Flowers, R. A. Ⅱ J. Org. Chem. 2004, 69, 6267.
[3] (f) Flogel, O.; Amombo, M. G. O.; Reissig, H.-U.; Zahan, G.; Brudgam, I.; Hartl, H. Chem.-Eur. J. 2003, 9, 1405.
[3] (g) Verniest, G.; Claessens, S.; Bombeke, F.; Van Thienen, T.; De Kimpe, N. Tetrahedron 2005, 61, 2879.
[4] (a) Novikov, M. S.; Khlebnikov, A. F.; Shevchenko, M. V.; Kostikov, R. R.; Vidovic, D. Russ. J. Org. Chem. 2005, 41, 1496.
[4] (b) Chen, M.-J.; Chang, S.-T.; Liu, R.-S. Tetrahedron 2000, 56, 5029.
[4] (c) Ghorai, M. K.; Tiwari, D. P. J. Org. Chem. 2013, 78, 2617.
[5] Alberti A. Carloni P. Eberson L. Greci L. Stipa P. J. Chem. Soc., Perkin Trans. 2 1997 887
[6] (a) Guo, S. H.; Mi, X. L. Tetrahedron Lett. 2017, 58, 2881.
[6] (b) Ashokkumar, V.; Siva, A. Org. Biomol. Chem. 2015, 13, 10216.
[6] (c) Azad, C. S.; Khan, I. A.; Narula, A. K. Org. Biomol. Chem. 2016, 14, 11454.
[6] (d) Dong, W. K.; Xu, D. C.; Xie, J. W. Chin. J. Chem. 2012, 30, 1771.
[6] (e) Kotrusz, P.; Toma, S.; Schmalz, H.-G.; Adler, A. Eur. J. Org. Chem. 2000, 7, 1577.
[7] (a) Liu, Y.-L.; Liu, D.-E.; Du, M.-F.; Cao, C.-X.; Chen, Z.-G. Chem. J. Chin. Univ. 2015, 36, 1117 (in Chinese).
[7] (刘亚丽, 刘德娥, 杜曼飞, 曹晨茜, 陈战国, 高等学校化学学报, 2015, 36, 1117.)
[7] (b) Chen, Z.-G.; Zhao, P.-F.; Wang, Y. Eur. J. Org. Chem. 2011, 5887.
[7] (c) Chen, Z.-G.; Zhou, J.-M.; Wang, Y.; Li, W.-L. Acta Chim. Sinica 2011, 69, 2851 (in Chinese).
[7] (陈战国, 周继梅, 王芸, 李文丽, 化学学报, 2011, 69, 2851.)
[7] (d) Chen, Z.-G.; Wang, Y.; Wei, J.-F.; Zhao, P.-F.; Shi, X.-Y. J. Org. Chem. 2010, 75, 2085.
[7] (e) Du, M. F.; Hou, D.; Hui, W. P.; Chen, Z.-G. Chem. J. Chin. Univ. 2016, 37, 902 (in Chinese).
[7] (杜曼飞, 侯摇丹, 惠文萍, 陈战国, 高等学校化学学报, 2016, 37, 902.)
[8] Halimehjani A. Z. Karimi N. Saidi M. R. Synth. Commun. 2013 43 744.
[9] Shibatomi K. Zhang Y. Yamamoto H. Chem.-Asian J. 2008 3 1581.
文章导航

/