一种响应速率匹配的双反应探针用于荧光识别硫化氢
收稿日期: 2019-05-16
网络出版日期: 2019-07-17
基金资助
国家自然科学基金(21778013);河北省自然科学基金(B2018201234);河北省高等学校科学技术研究(QN2017015);保定市科学研究与发展计划(16zg031);河北大学实验室开放(sy201833);河北大学实验室开放(KYZJX18144)
A Response Rate Matching Dual-Reactable Probe for Fluorescent Recognition of Hydrogen Sulfide
Received date: 2019-05-16
Online published: 2019-07-17
Supported by
the National Natural Science Foundation of China(21778013);the Natural Science Foundation of Hebei Province(B2018201234);the Colleges and Universities Science Technology Research Project of Hebei Province(QN2017015);the Science Technology Research and Development Guidance Programme Project of Baoding City(16zg031);the Open Fund of Laboratory in Hebei University(sy201833);the Open Fund of Laboratory in Hebei University(KYZJX18144)
解畅 , 马趁 , 贾旭 , 张学琪 , 魏超 , 张平竹 , 李小六 . 一种响应速率匹配的双反应探针用于荧光识别硫化氢[J]. 有机化学, 2019 , 39(11) : 3277 -3282 . DOI: 10.6023/cjoc201905038
A dual-reactable H2S fluorescent probe was designed and synthesized by employing ortho-fluoro-substituted coumarin azide and 7-nitrobenzofurazan-piperazine as the H2S reactive groups and the fluorescence quenching groups. The recognition behaviors of the probe to H2S were investigated and the results showed that the probe exhibited high selectivity and sensitivity. The fluorescence off-on enhancement was ca. 3600-fold, and the detection limit was 4.0×10-8 mol/L. The results of enzyme activity test indicated that the probe could be used for cystathionine β-synthase (CBS) activity detection and inhibitor screening. Furthermore, the probe was successfully applied for the imaging of H2S in living cells.
Key words: hydrogen sulfide; response rate; dual-reactable; fluorescent probe
[1] | (a) Szabo, C. Nat. Rev. Drug Discovery 2007, 6, 917. |
[1] | (b) Li, L.; Rose, P.; Moore, P. K. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 169. |
[1] | (c) Wallace, J. L.; Wang, R. Nat. Rev. Drug Discovery 2015, 14, 329. |
[1] | (d) Kimura, H.; Shibuya, N.; Kimura, Y. Antioxid. Redox Signaling 2012, 17, 45. |
[2] | (a) Kabil, O.; Banerjee, R. Antioxid. Redox Signaling 2014, 20, 770. |
[2] | (b) Kimura, H. Exp. Physiol. 2011, 96, 833. |
[2] | (c) Yang, G. D.; Wu, L. Y.; Jiang, B.; Yang, W.; Qi, J. S.; Cao, K.; Meng, Q. H.; Asif, K.; Mu, W. T.; Zhang, S. M.; Solomon, H.; Wang, R. Science 2008, 322, 587. |
[2] | (d) Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. Nat. Commun. 2013, 4, 1366. |
[3] | (a) Kamoun, P.; Belardinelli, M. C.; Chabli, A.; Lallouchi, K.; Chadefaux-Vekemans, B. Am. J. Med. Genet., Part A 2003, 116, 310. |
[3] | (b) Fiorucci, S.; Antonelli, E.; Mencarelli, A.; Orlandi, S.; Renga, B.; Rizzo, G.; Distrutti, E.; Shah, V.; Morelli, A. Hepatology 2005, 42, 539. |
[4] | (a) Hu, L. F.; Lu, M.; Wu, Z. F.; Wong, P. T.; Bian, J. S. Mol. Pharmacol. 2009, 75, 27. |
[4] | (b) Li, L.; Bhatia, M.; Moore, P. K. Curr. Opin. Pharmacol. 2006, 6, 125. |
[5] | (a) Paul, B. D.; Snyder, S. H. Antioxid. Redox Signaling 2015, 22, 411. |
[5] | (b) Furne, J.; Saeed, A.; Levitt, M. D. Am. J. Physiol.: Regul., Integr. Comp. Physiol. 2008, 295, 1479. |
[6] | Kolluru G. K. Shen X. Bir S. C. Kevil C. G. Nitric Oxide 2013 35 5. |
[7] | (a) Gao, M.; Yu, F. B.; Chen. L. X. Prog. Chem. 2014, 26, 1065 (in Chinese). |
[7] | (高敏, 于法标, 陈令新, 化学进展, 2014, 26, 1065.) |
[7] | (b) Lin, V. S.; Chen, W.; Xian, M.; Chang, C. J. Chem. Soc. Rev. 2015, 44, 4596. |
[7] | (c) Bruemmer, K. J.; Brewer, T. F.; Chang, C. J. Curr. Opin. Chem. Biol. 2017, 39, 17. |
[7] | (d) Chen, Y.; Wei, T.; Zhang, Z.; Zhang, W.; Lü, J. Chin. Chem. Lett. 2017, 28, 1957. |
[8] | (a) Lippert, A. R.; New, E. J.; Chang, C. J. J. Am. Chem. Soc. 2011, 133, 10078. |
[8] | (b) Peng, H. J.; Cheng, F. Y.; Dai, C. F.; Adrienne L. K.; Benjamin, L. P.; David, J. L.; Wang, B. H. Angew. Chem., Int. Ed. 2011, 50, 9672. |
[8] | (c) Chen, S.; Chen, Z. J.; Ren, W.; Ai, H. W. J. Am. Chem. Soc. 2012, 134, 9589. |
[8] | (d) Montoya, L. A.; Pluth, M. D. Chem. Commun. 2012, 48, 4767. |
[8] | (e) Sun, W.; Fan, J. L.; Hu, C.; Cao, J. F.; Zhang, H.; Xiong, X. Q.; Wang, J. Y.; Cui, S.; Sun, S. G.; Peng, X. J. Chem. Commun. 2013, 49, 3890. |
[8] | (f) Zhang, J. Y.; Guo, W. Chem. Commun. 2014, 50, 4214. |
[8] | (g) Wei, C.; Wang, R. Y.; Wei, L.; Cheng, L. H.; Li, Z. F.; Xi, Z.; Yi, L. Chem.-Asian J. 2014, 9, 3586. |
[8] | (h) Zhu, Z. T.; Li, Y. Y.; Wei, C.; Wen, X.; Xi, Z.; Yi, L. Chem.- Asian J. 2016, 11, 68. |
[8] | (i) He, P.; Tang, L. J.; Zhong, K. L.; Hou, S. H.; Yan, X. M. Chin. J. Org. Chem. 2017, 37, 423 (in Chinese). |
[8] | (何平, 汤立军, 钟克利, 侯淑华, 燕小梅, 有机化学, 2017, 37, 423.) |
[9] | (a) Liu, C. R.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M. Angew. Chem., Int. Ed. 2011, 50, 10327. |
[9] | (b) Cao, X. W.; Lin, W. Y.; Zheng, K. B.; He, L. W. Chem. Commun. 2012, 48, 10529. |
[9] | (c) Huang, Z. J.; Ding, S. S.; Yu, D. H.; Huang, F. H.; Feng, G. D. Chem. Commun. 2014, 50, 9185. |
[9] | (d) Wei, C.; Wei, L.; Xi, Z.; Yi, L. Tetrahedron Lett. 2013, 54, 6937. |
[9] | (e) Wei, C.; Zhu, Q.; Liu, W. W.; Chen, W. B.; Xi, Z.; Yi, L. Org. Biomol. Chem. 2014, 12, 479. |
[9] | (f) Zhao, C. C.; Zhang, X. L.; Li, K. B.; Zhu, S. J.; Guo, Z. Q.; Zhang, L. L.; Wang, F. Y.; Fei, Q.; Luo, S. H.; Shi, P.; Tian, H.; Zhu, W. H. J. Am. Chem. Soc. 2015, 137, 8490. |
[9] | (g) Zhou, C.; Qiu, B.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Li, Y. Chin. J. Org. Chem. 2017, 37, 92 (in Chinese). |
[9] | (周婵, 邱波, 曾毅, 陈金平, 于天君, 李嫕, 有机化学, 2017, 37, 92.) |
[10] | (a) Qian, Y.; Karpus, J.; Kabil, O.; Zhang, S. Y.; Zhu, H. L.; Banerjee, R.; Zhao, J.; He, C. Nat. Commun. 2011, 2, 495. |
[10] | (b) Li, X.; Zhang, S.; Cao, J.; Xie, N.; Liu, T.; Yang, B.; He, Q. J.; Hu, Y. Z. Chem. Commun. 2013, 49, 8656. |
[10] | (c) Liu, J.; Sun, Y. Q.; Zhang, J. Y.; Yang, T.; Cao, J. B.; Zhang, L. S.; Guo, W. Chem.-Eur. J. 2013, 19, 4717. |
[10] | (d) Chen, Y. C.; Zhu, C. C.; Yang, Z. H.; Chen, J. J.; He, Y. F.; Jiao, Y.; He, W. J.; Qiu, L.; Cen, J. J.; Guo, Z. J. Angew. Chem., Int. Ed. 2013, 52, 1688. |
[11] | (a) Sasakura, K.; Hanaoka, K.; Shibuya, N.; Mikami, Y.; Kimura, Y.; Komatsu, T.; Ueno, T.; Terai, T.; Kimura, H.; Nagano, T. J. Am. Chem. Soc. 2011, 133, 18003. |
[11] | (b) Qu, X. Y.; Li, C. J.; Chen, H. C.; Mack, J.; Guo, Z. J.; Shen, Z. Chem. Commun. 2013, 49, 7510. |
[11] | (c) Zhong, K. L.; Zhao, J.; Li, Q. Y.; Hou, S. H.; Tang, Y. W.; Bian, Y. J.; Tang, L. J. Chin. J. Org. Chem. 2018, 38, 1786 (in Chinese). |
[11] | (钟克利, 赵杰, 李秋莹, 侯淑华, 汤轶伟, 边延江, 汤立军, 有机化学, 2018, 38, 1786.) |
[12] | (a) Zhang, C. Y.; Wei, L.; Wei, C.; Zhang, J.; Wang, R. Y.; Xi, Z.; Yi, L. Chem. Commun. 2015, 51, 7505. |
[12] | (b) Wei, C.; Wang, R. Y.; Zhang, C. Y.; Xu, G. C.; Li, Y. Y.; Zhang, Q. Z.; Li, L. Y.; Yi, L.; Xi, Z. Chem.-Asian J. 2016, 11, 1376. |
[12] | (c) Ma, C.; Wei, C.; Li, X. Y.; Zheng, X. Y.; Chen, B.; Wang, M.; Zhang, P. Z.; Li, X. L. Dyes Pigm. 2019, 162, 624. |
[12] | (d) Montoya, L. A.; Pearce, T. F.; Hansen, R. J.; Zakharov, L. N.; Pluth, M. D. J. Org. Chem., 2013, 78, 6550. |
/
〈 |
|
〉 |