研究论文

CO2调控邻卤苯腈硫解选择性合成邻卤硫代苯甲酰胺类衍生物

  • 桑国智 ,
  • 冯雪童 ,
  • 陈鹃 ,
  • 李闪闪 ,
  • 李卓娜 ,
  • 李潇 ,
  • 韩利民 ,
  • 洪海龙 ,
  • 竺宁
展开
  • 内蒙古工业大学化工学院 内蒙古自治区CO2捕集与资源化工程技术研究中心 呼和浩特 010051

收稿日期: 2019-04-25

  修回日期: 2019-07-05

  网络出版日期: 2019-08-01

基金资助

国家自然科学基金(Nos.21865020,21362019)、内蒙古自然科学基金(No.2019LH02009)和2019年度内蒙古自治区高等学校“青年科技英才支持计划”资助项目.

Synthesis of o-Halothiobenzamide Derivatives from the Selective Thiolysis Reaction of o-Halobenzonitrile Mediated by CO2

  • Sang Guozhi ,
  • Feng Xuetong ,
  • Chen Juan ,
  • Li Shanshan ,
  • Li Zhuona ,
  • Li Xiao ,
  • Han Limin ,
  • Hong Hailong ,
  • Zhu Ning
Expand
  • Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051

Received date: 2019-04-25

  Revised date: 2019-07-05

  Online published: 2019-08-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21865020, 21362019), the Natural Science Foundation of Inner Mongolia (No. 2019LH02009), and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (2019).

摘要

探索了一种在CO2作用下邻卤苯腈与NaHS发生硫解反应选择性合成邻卤硫代苯甲酰胺的方法.在该方法中,CO2/H2O/NaHS缓冲体系为HS-离子选择性进攻腈基转化为目标产物提供适宜的pH环境,同时为反应持续提供氢质子.进一步研究发现,CO2/Na2S·9H2O缓冲体系也同样能够高效地发生硫解反应选择性合成邻卤硫代苯甲酰胺.该合成方法简单、高效、原子经济性好,对不同取代的邻卤苯腈具有较好的底物适用性.

本文引用格式

桑国智 , 冯雪童 , 陈鹃 , 李闪闪 , 李卓娜 , 李潇 , 韩利民 , 洪海龙 , 竺宁 . CO2调控邻卤苯腈硫解选择性合成邻卤硫代苯甲酰胺类衍生物[J]. 有机化学, 2019 , 39(12) : 3542 -3549 . DOI: 10.6023/cjoc201904063

Abstract

A method for the selective synthesis of o-halothiobenzamide by thiolysis reaction of o-halobenzonitrile with NaHS under the action of CO2 was explored. CO2/H2O/NaHS was used as a buffer system to provide a suitable pH environment, which would make HS- attack the nitrile-based carbon selectively to produce the corresponding o-halothiobenzamide. Moreover, the buffer system also provided the additionally required hydrogen atom for the thiolysis reaction of o-haloben-zonitrile with NaHS. Further studies have found that the CO2/Na2S·9H2O buffer system could also efficiently promote the thiolysis reaction of o-halobenzonitrile to form the corresponding o-halothiobenzamide. This synthetic method could be used to prepare different substituted o-halobenzonitriles, which is a simple, efficient and high atom-economic reaction.

参考文献

[1] Wen, M.; Sun, P.-P.; Luo, X. Y.; Deng, W. P. Tetrahedron 2018, 74, 4168.
[2] Yu, L. S. H.; Dong, J. L.; Gao, Z. J.; Wang, J.; Xie, J. W. Synthesis 2018, 50, 1667.
[3] Han, T.; Wang, Y.; Li, H. L.; Luo, X. Y.; Deng, W. P. J. Org. Chem. 2018, 83, 1538.
[4] Alom, N. E.; Wu, F.; Li, W. Org. Lett. 2017, 19, 930.
[5] Wagle, S.; Adhikari, A. V.; Kumari, N. S. Phosphorus, Sulfur Silicon Relat. Elem. 2008, 183, 1285.
[6] Wipf, P.; Venkatraman, S. J. Org. Chem. 1996, 61, 8004.
[7] Sun, Y.; Wu, W.; Jiang, H. F. Eur. J. Org. Chem. 2014, 2014, 4239.
[8] Jagodziński, T. S. Chem. Rev. 2003, 103, 197.
[9] Rafiqul, I. M.; Shimada, K.; Aoyagi, S.; Takikawa, Y.; Kabuto, C. Heteroat. Chem. 2004, 15, 175.
[10] Peudru, F.; Lohier, J. F.; Gulea, M.; Reboul, V. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 220.
[11] Oschatz, S.; Brunzel, T.; Wu, X. F.; Langer, P. Org. Biomol. Chem. 2015, 13, 1150.
[12] Guo, W. S.; Gong, H.; Zhang, Y. A.; Wen, L. R.; Li, M. Org. Lett. 2018, 20, 6394.
[13] Zbruyev, O. I.; Stiasni, N.; Kappe, C. O. J. Comb. Chem. 2003, 5, 145.
[14] Okamoto, K.; Yamamoto, T.; Kanbara, T. Synlett 2007, 2687.
[15] Xu, K.; Li, Z.; Cheng, F.; Zuo, Z. Z.; Wang, T.; Wang, M.; Liu, L. Org. Lett. 2018, 20, 2228.
[16] Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2012, 14, 4274.
[17] Qu, Y. Y.; Li, Z. K.; Xiang, H. F.; Zhou, X. G. Adv. Synth. Catal. 2013, 355, 3141.
[18] Guntreddi, T.; Vanjari, R.; Singh, K. N. Org. Lett. 2014, 16, 3624.
[19] Nguyen, T. B.; Tran, M. Q.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2014, 16, 310.
[20] Kumar, S.; Vanjari, R.; Guntreddi, T.; Singh, K. N. Tetrahedron 2016, 72, 2012.
[21] Liu, J. M.; Zhao, S. S.; Yan, X. Y.; Zhang, Y. Y.; Zhao, S. F.; Zhuo, K. L.; Yue, Y. F. Asian J. Org. Chem. 2017, 6, 1764.
[22] Kurpil, B.; Kumru, B.; Heil, T.; Antonietti, M.; Savateev, A. Green Chem. 2018, 20, 838.
[23] Gisbert, P.; Pastor, I. M. Synthesis 2018, 50, 3031.
[24] Wei, J.; Li, Y.; Jiang, X. Org. Lett. 2016, 47, 340.
[25] Cao, X. T.; Qiao, L.; Zheng, H.; Yang, H. Y.; Zhang, P. F. RSC Adv. 2017, 8, 170.
[26] Mahammed, K. A.; Jayashankara, V. P.; Premsai Rai, N.; Mohana Raju, K.; Arunachalam, P. N. Synlett 2009, 2338.
[27] Abás, S.; Moens, U.; Escolano, C. Tetrahedron Lett. 2017, 58, 2768.
[28] Boys, M. L.; Downs, V. L. Synth. Commun. 2006, 36, 295.
[29] Nagl, M.; Panuschka, C.; Barta, A.; Schmid, W. Synthesis 2008, 4012.
[30] Cho, D.; Ahn, J.; De Castro, K. A.; Ahn, H.; Rhee, H. Tetrahedron 2010, 66, 5583.
[31] Li, S.-S.; Hong, H. L.; Han, L. M.; Zhang, T. M.; Wang, Y. L.; Zhu, N. Chin. J. Org. Chem. 2018, 38, 304(in Chinese). (李闪闪, 洪海龙, 韩利民, 张田苗, 王云龙, 竺宁, 有机化学, 2018, 38, 304.)
[32] Manaka, A.; Sato, M. Synth. Commun. 2005, 35, 761.
[33] Shi, J. G.; Yang, D. F. Corros. Prot. Petrochem. Ind. 2013, 30, 1(in Chinese). (史军歌, 杨德凤, 石油化工腐蚀与防护, 2013, 30, 1.)
[34] Chao, E.; Haffner, C. D.; Lambert, M. H.; Maloney, P. R.; Sierra, M. L.; Sternbach, D. D.; Sznaidman, M. L.; Willson, T. M.; Xu, H. E.; Gellibert, F. J. WO 2001000603, 2001.
[35] Bjorklund, M. D.; Coburn, M. D. J. Heterocycl. Chem. 1980, 17, 819.
[36] Crane, L. J.; Anastassiadou, M.; Stigliani, J.-L.; Baziard-Mouysset, G.; Payard, M. Tetrahedron 2004, 60, 5325.
[37] Fairfull, A. E. S.; Lowe, J. L.; Peak, D. A. J. Chem. Soc. 1952, 742.
[38] Nagl, M.; Panuschka, C.; Barta, A.; Schmid, W. Synthesis 2008, 4012.
[39] Shi, B.; Blake, A. J.; Lewis, W.; Campbell, I. B.; Judkins, B. D.; Moody, C. J. J. Org. Chem. 2009, 75, 152.
[40] Shiau, C. Y.; Chern, J. W.; Tien, J. H.; Liu, K. C. J. Heterocycl. Chem. 1989, 26, 595.
[41] Kaleta, Z.; Makowski, B. T.; Soós, T.; Dembinski, R. Org. Lett. 2006, 8, 1625.
[42] Pathak, U.; Pandey, L. K.; Tank, R. J. Org. Chem. 2008, 73, 2890.
文章导航

/