综述与进展

无过渡金属催化的咪唑并杂环C—H键的C—杂原子化的研究进展

  • 徐鑫明 ,
  • 陈德茂 ,
  • 王祖利
展开
  • a 烟台大学化学化工学院 山东烟台 264005;
    b 青岛农业大学化学与药学院 山东青岛 266109;
    c 湖南科技大学化学化工学院 湖南湘潭 411201

收稿日期: 2019-04-27

  修回日期: 2019-07-24

  网络出版日期: 2019-08-30

基金资助

烟台大学青年博士基金(No.HY19B06)资助项目.

Recent Progress in Transition Metal-Free C-Heteroatom Bond Formation by Functionalization of C-H Bond in Imidazole-Fused Heterocycles

  • Xu Xinming ,
  • Chen Demao ,
  • Wang Zuli
Expand
  • a College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005;
    b College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109;
    c School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201

Received date: 2019-04-27

  Revised date: 2019-07-24

  Online published: 2019-08-30

Supported by

Project supported by the Young Scholars Research Fund of Yantai University (Nos. HY19B06).

摘要

通过无过渡金属催化的C—H官能团化反应构筑C—杂原子键的研究发展迅速,已经成为一种合成高度官能团化天然产物或生理活性分子的绿色、高效的合成策略,包括氨基化、烷氧基化、巯基化、硒基化、卤化化合物等.特别是,咪唑并杂环的C—杂原子化反应被视为最重要的一类反应,因为向杂环分子中引入杂原子基团可以产生一类新的生物活性化合物.重点介绍了近几年无过渡金属催化的在咪唑并杂环上形成C—杂原子键的研究进展,进一步阐述该类反应的机理.

本文引用格式

徐鑫明 , 陈德茂 , 王祖利 . 无过渡金属催化的咪唑并杂环C—H键的C—杂原子化的研究进展[J]. 有机化学, 2019 , 39(12) : 3338 -3352 . DOI: 10.6023/cjoc201904068

Abstract

Recently, the direct incorporation of heteroatom into imidazole-fused heterocycles through transition metal-free C-H functionalization has rapidly been advanced and become an eco-friendly synthetic tool for the synthesis of functionalized natural or bioactive molecules such as (hetero)arenes, olefins, carbonyl compounds. In particular, the C-H functionalization of imidazole-fused heterocycles has been considered to be the most important since it can lead to a new class of biologically active compounds. The recent progress in the incorporation of heteroatom into imidazole-fused heterocycles through transition metal-free C-H functionalization is introduced, and their mechanisms from a new perspective are also elaborated.

参考文献

[1] (a) Majumdar, P.; Pati, A.; Patra, M.; Behera, R. K.; Behera, A. K. Chem. Rev. 2014, 114, 2942.
(b) Frizon, T. E. A.; Rafique, J.; Saba, S.; Bechtold, I. V.; Gallardo, H.; Braga, A. L. Eur. J. Org. Chem. 2015, 16, 3470.
(c) Li, G.-H.; Dong, D.-Q.; Yu, X.-Y.; Wang, Z.-L. New J. Chem. 2019, 43, 1667.
(d) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.
(e) Li, G.-H.; Dong, D.-Q.; Deng, Q.; Yan, S.-Q.; Wang, Z.-L. Synthesis 2019, 51, 3313.
(f) Xie, L.-Y.; Peng, S.; Liu, F.; Liu, Y.-F.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 7193.
[2] (a) Xu, X.-M.; Chen, D.-M.; Wang, Z.-L. Chin. Chem. Lett. 2019, DOI:10.1016/j.cclet.2019.05.048.
(b) Lhassani, M.; Chavignon, O.; Chezal, J.-M.; Teulade, J.-C.; Chapat, J.-P.; Snoeck, R.; Andrei, G.; Balzarini, J.; Clercq, E. D.; Gueiffier, A. Eur. J. Med. Chem. 1999, 34, 271.
[3] (a) Chitrakar, R.; Subbarayappa, A. Chem. Rec. 2017, 17, 1.
(b) Dong, D.-Q.; Hao, S.-H.; Yang, D.-S.; Li, L.-X.; Wang, Z.-L. Eur. J. Org. Chem. 2017, 2017, 6576.
(c) Sun, F.; Liu, X.; Chen, X.; Qian, C.; Ge, X. Chin. J. Org. Chem. 2017, 37, 2211.
(d) Jin, C.-A.; Xu, Q.; Feng, G.-F.; Jin, Y.; Zhang, L.-Y. Chin. J. Org. Chem. 2018, 38, 775.
[4] (a) Liu, Y.-Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667.
(b) Fu, L; Wan, J.-P. Asian J. Org. Chem. 2019, 8, 767.
(c) Jiang, X.; Wang, S.; Guo, G.; Lu, B. Chin. J. Org. Chem. 2017, 37, 841.
(d) Wang, Y.; Liu, Y.-Y. Acta Chim. Sinica 2019, 77, 418.
(e) Guo, Y; Xiang, Y.; Wei, L.; Wan, J.-P. Org. Lett. 2018, 20, 3971.
(f) Gao, Y; Liu, Y.-Y.; Wan, J.-P. J. Org. Chem. 2019, 84, 2243.
[5] (a) Saidi, O.; Marafie, J.; Ledger, A. E.; Liu, P. M.; Mahon, M. F.; Kociok-Kohn, G.; Whittlesey, M. K.; Frost, C. G. J. Am. Chem. Soc. 2011, 133, 19298.
(b) Umierski, N.; Manolikakes, G. Org. Lett. 2013, 15, 4972.
(c) Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Org. Lett. 2013, 15, 1270.
(d) Yi, H.; Chen, H.; Bian, C.; Tang, Z.; Singh, A. K.; Qi, X.; Yue, X.; Yu, L.; Lee, J.-F.; Lei, A. Chem. Commun. 2017, 53, 6736.
(e) Yin, Y.; Xie, J.; Huang, F.-Q.; Qi, L.-W.; Zhang, B. Adv. Synth. Catal. 2017, 359, 1037.
[6] (a) Nordqvist, A.; Nilsson, M. T.; Lagerlund, O.; Muthas, D.; Gising, J.; Yahiaoui, S.; Odell, L. R.; Srinivasa, B. R.; Larhed, M.; Mowbray, S. L.; Karlen, A. Med. Chem. Commun. 2012, 3, 620.
(b) Elleder, D.; Baiga, T. J.; Russell, R. L.; Naughton, J. A.; Hughes, S. H.; Noel, J. P.; Young, J. A. Virol. J. 2012, 9, 305.
(c) Odell, L. R.; Nilsson, M. T.; Gising,, J.; Lagerlund O.; Muthas, D.; Nordqvist, A.; Karlen, A.; Larhed, M. Bioorg. Med. Chem. Lett. 2009, 19, 4790.
[7] Wang, Y.; Frett, B.; McConnell, N.; Li, H. Org. Biomol. Chem. 2015, 13, 2958.
[8] Mondal, S.; Samanta, S.; Jana, S.; Hajra, A. J. Org. Chem. 2017, 82, 4504.
[9] Singsardar, M.; Mondal, S.; Sarkar, R.; Hajra, A. ACS Omega 2018, 3, 12505.
[10] Samanta, S.; Ravi, C.; Rao, S. N.; Joshi, A.; Adimurthy, S. Org. Biomol. Chem. 2017, 15, 9590.
[11] Liu, K.; Wu, J.; Deng, Y.; Song, C.; Song, W.; Lei, A. ChemElectroChem 2019, 6, 4173.
[12] Coutant, E. P.; Janin, Y. L. Chem. Eur. J. 2015, 21, 17158.
[13] Zhang, J.; Lu, X.; Li, T.; Wang, S.; Zhong, G. J. Org. Chem. 2017, 82, 5222.
[14] Kibriya, G.; Samanta, S.; Jana, S.; Mondal, S.; Hajra, A. J. Org. Chem. 2017, 82, 13722.
[15] (a) Hamdouchi, C.; Blas, J.; Prado, M.; Gruber, J.; Heinz, B. A.; Vance, L. J. Med. Chem. 1999, 42, 50.
(b) Bochis, R. J.; Olen, L. E.; Fisher, M. H.; Reamer, R. A.; Wilks, G.; Taylor, J. E.; Olson, G. J. Med. Chem. 1981, 24, 1483.
[16] (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
(b) Martinek, M.; Korf, M.; Srogl, J. Chem. Commun. 2010, 46, 4387.
(c) Sahoo, S. K.; Banerjee, A.; Chakraborty, S.; Patel, B. K. ACS Catal. 2012, 2, 544.
(d) Saidi, O.; Marafie, J.; Ledger, A. E.; Liu, P. M.; Mahon, M. F.; Kociok-Kohn, G.; Whittlesey, M. K.; Frost, C. G. J. Am. Chem. Soc. 2011, 133, 19298.
(e) Umierski, N.; Manolikakes, G. Org. Lett. 2013, 15, 4972.
(f) Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Org. Lett. 2013, 15, 1270.
(g) Zhao, X.; Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466.
(h) Niu, B.; Xu, L.; Xie, P.; Wang, M.; Zhao, W.; Pittman, C. U.; Zhou, A. ACS Comb. Sci. 2014, 16, 454.
[17] Hiebel, M.; Berteina-Raboin, S. Green Chem. 2015, 17, 937.
[18] Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838.
[19] Iida, H.; Demizu, R.; Ohkado, R. J. Org. Chem. 2018, 83, 12291.
[20] Wu, S.; Feng, C.; Hu, D.; Huang, Y.; Li, Z.; Luo, Z.; Ma, S. Org. Biomol. Chem. 2017, 15, 1680.
[21] Rahaman, R.; Das, S.; Barman, P. Green Chem. 2018, 20, 141.
[22] Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49.
[23] Ji, X.-M.; Zhou, S.-J.; Chen, F.; Zhang, X.-G.; Tang, R.-Y. Synthesis 2015, 47, 659.
[24] Rafique, J.; Saba, S.; Rosrio, A.; R. Braga, A. L. Chem. Eur. J. 2016, 22, 1.
[25] Bettanin, L.; Saba, S.; Doerner, C. V.; Franco, M. S.; Godoi, M.; Rafique, J.; Braga, A. L. Tetrahedron 2018, 74, 3971.
[26] Liu, W.-J.; Wang, S.; Chen, Y.-Z.; Huang, Y.; Li, Z.; Wang, A.-D. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 689.
[27] Maddi, R. R.; Shirsat, P. K.; Kumar, S.; Meshram, H. M. ChemistrySelect 2017, 2, 1544.
[28] An, Y.; Li, J.-X.; Li, M.; Li, C.-S.; Yang, S. Chin. J. Org. Chem. 2017, 37, 720(in Chinese). (安艳妮, 李建晓, 李蒙, 李春生, 杨少容, 有机化学, 2017, 37, 720.)
[29] (a) Xiao, F. H.; Xie, H.; Liu, S. W.; Deng, G. J. Adv. Synth. Catal. 2014, 356, 364.
(b) Katrun, P.; Hongthong, S.; Hlekhlai, S.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Kuhakarn, C. RSC Adv. 2014, 4, 18933.
(c) Rao, H. H.; Wang, P.; Wang, J. C.; Li, Z. F.; Sun, X. Z.; Cao, S. L. RSC Adv. 2014, 4, 49165.
[30] Huang, X.; Wang, S.; Li, B.; Wang, X.; Ge, Z.; Li, R. RSC Adv. 2015, 5, 22654.
[31] Guo, Y.-J.; Lu, S.; Tian, L.-L.; Huang, E.-L.; Hao, X.-Q.; Zhu, X.; Shao, T.; Song, M.-P. J. Org. Chem. 2018, 83, 338.
[32] Sun, P.; Yang, D.; Wei, W.; Jiang, M.; Wang, Z.; Zhang, L.; Zhang, H.; Zhang, Z.; Wang, Y.; Wang, H. Green Chem. 2017, 19, 4785.
[33] Hajra, A.; Bagdi, A. K.; Mitra, S.; Ghosh, M. Org. Biomol. Chem. 2015, 13, 3314.
[34] Chowdhury, S. R.; Fadikar, P.; Hoque, I. U.; Maity, S. Asian J. Org. Chem. 2018, 7, 332.
[35] Ravi, C.; Joshi, A.; Adimurthy, S. Eur. J. Org. Chem. 2017, 2017, 3646.
[36] (a) Pang, Y.; An, B.; Lou, L.; Zhang, J.; Yan, J.; Huang, L.; Li, X.; Yin, S. J. Med. Chem. 2017, 60, 7300.
(b) Kumar, S.; Johansson, H.; Kanda, T.; Engman, L.; Muller, T.; Bergenudd, H.; Jonsson, M. Eur. J. Org. Chem. 2017, 2017, 3055.
(c) Kumar, S.; Sharma, N.; Maurya, I.; Bhasin, A. K. K.; Wangoo, N.; Brandao, P.; Fleix, V.; Kumar, R. K. Eur. J. Med. Chem. 2016, 123, 916.
[37] (a) Perin, G.; Lenardao, E. J.; Jacob, R. G.; Panatieri, R. B. Chem. Rev. 2009, 109, 1277.
(b) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.
(c) Abdo, M.; Zhang, Y.; Schramm, V. L.; Knapp, S. Org. Lett. 2010, 12, 2982.
(d) Rafique, J.; Saba, S.; Rosario, A. R.; Braga, A. L. Chem. Eur. J. 2016, 22, 11854.
(e) Shu, S.; Fan, Z.; Yao, Q.; Zhang, A. J. Org. Chem. 2016, 81, 5263.
(f) Sun, K.; Wang, X.; Lv, Y.; Li, G.; Jiao, H.; Dai, C.; Li, Y.; Zhang, C.; Liu, L. Chem. Commun. 2016, 52, 8471.
[38] (a) Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371.
(b); Zhong, S.; Xie, L.; Cao, X.; Liu, Y.-Y.; Wei, L. Org. Lett. 2016, 18, 584.
(c) Zhong, S.; Liu, Y.-Y.; Cao, X.; Wei, L.; Wan, J.-P. ChemCatChem 2017, 9, 465.
[39] Rafique, J.; Saba, S.; Franco, M. S.; Bettanin, L.; Schneider, A. R.; Silva, L. T.; Braga, A. L. Chem. Eur. J. 2018, 24, 4173.
[40] Rodrigues, I.; Barcellos, A. M.; Belladona, A. L.; Roehrs, J. A.; Cargnelutti, R.; Alves, D.; Perin, G.; Schumacher, R. F. Tetrahedron 2018, 74, 4242.
[41] Guo, T.; Wei, X.; Liu, Y.; Zhang, P.; Zhao, Y. Org. Chem. Front. 2019, 6, 1414.
[42] Kim, Y. J.; Kim, D. Y. Tetrahedron Lett. 2019, 60, 739.
[43] (a) Winterton, N. Green Chem. 2000, 2, 173.
(b) Gribble, G. W. J. Chem. Educ. 2004, 81, 1441.
(c) Liu, C.; Zhang, B. Chem. Record. 2016, 16, 667.
(d) Fujimori, D. G.; Walsh, C. T. Curr. Opin. Chem. Biol. 2007, 11, 553.
(e) Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937.
[44] (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.
(b) Rout, L.; Sen, T. K.; Punniyamurthy, T. Angew. Chem., Int. Ed. 2007, 46, 5583.
[45] Liu, P.; Gao, Y.; Gu, W.; Shen, Z.; Sun, P. J. Org. Chem. 2015, 80, 11559.
[46] Dey, A.; Singsardar, M.; Sarkar, R.; Hajra, A. ACS Omega 2018, 3, 3513.
[47] Mondal, S.; Samanta, S.; Singsardar, M.; Mishra, S.; Mitra, S.; Hajra, A. Synthesis 2016, 48, 4009.
[48] Zhao, C.; Li, F.; Yang, S.; Liu, L.; Huang, Z.; Chai, H. Chem. Heterocycl. Compd. 2018, 54, 568.
[49] Li, J.; Tang, J.; Wu, Y.; He, Q.; Yu, Y. RSC Adv. 2018, 8, 5058.
[50] Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792.
文章导航

/