研究论文

立体位阻效应导致的苯酚的区域选择性溴化

  • 马献涛 ,
  • 周坤洁 ,
  • 任梦娟 ,
  • 王梦雨 ,
  • 于静
展开
  • 信阳师范学院化学化工学院 信阳 464000

收稿日期: 2019-07-26

  修回日期: 2019-08-22

  网络出版日期: 2019-09-05

基金资助

河南省科技攻关(192102310031);河南省高等学校重点科研(19B150018);信阳师范学院“南湖学者奖励计划”青年项目;信阳师范学院青年骨干教师计划资助项目(2018GGJS-05)

Steric Hindrance Effect Leading to Regioselective Bromination of Phenols with HBr

  • Xiantao Ma ,
  • Kunjie Zhou ,
  • Mengjuan Ren ,
  • Mengyu Wang ,
  • Jing Yu
Expand
  • College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000

Received date: 2019-07-26

  Revised date: 2019-08-22

  Online published: 2019-09-05

Supported by

Project supported by the Key Scientific and Technological Project of Henan Province(192102310031);The Scientific Research Project of Henan Province(19B150018);The Nanhu Scholars Program for Young Scholars of Xinyang Normal University;The Young Core Instructor Program of Xinyang Normal University(2018GGJS-05)

摘要

报道了苯酚与廉价易得的氢溴酸的区域选择性溴化反应. 研究发现使用含有较大取代基的亚砜取代广为使用的二甲亚砜作为氧化剂, 可以极大地提高反应的区域选择性, 以中等至优秀的收率、高达99/1的区域选择性得到预期的溴代苯酚产物. 该方法可以很容易放大到50 mmol级别, 并且通过萃取与重结晶分离技术即可得到预期的溴代苯酚产物.

本文引用格式

马献涛 , 周坤洁 , 任梦娟 , 王梦雨 , 于静 . 立体位阻效应导致的苯酚的区域选择性溴化[J]. 有机化学, 2019 , 39(10) : 2796 -2801 . DOI: 10.6023/cjoc201907038

Abstract

A mild and regioselective bromination of phenols with the cheap and easily-available HBr is developed. By replacing the common used dimethyl sulfoxide (DMSO) with sulfoxides bearing sterically hindered substituents, the desired brominated phenols could be obtained in moderate to high yields with up to 99/1 regioselectivity. This method could be easily scaled up to 50 mmol scale and has the potential to isolate the desired product by simple extraction and recrystallization, showing great practicality of this new method.

参考文献

[1] Fusetani, N.; Matsunaga, S. Chem. Rev. 1993, 93, 1793.
[1] (b) Segraves, E. N.; Shah, R. R.; Segraves, N. L.; Johnson, T. A.; Whitman, S.; Sui, J. K.; Kenyon, V. A.; Cichewicz, R. H.; Crews, P.; Holman, T.R. J. Med. Chem. 2004, 47, 4060.
[1] (c) Akai, S.; Kakiguchi, K.; Nakamura, Y.; Kuriwaki, I.; Dohi, T.; Harada, S.; Kubo, O.; Morita, N.; Kita, Y. Angew. Chem., Int. Ed. 2007, 46, 7458.
[1] (d) Qian, S.; Ma, Y.; Gao, S.; Luo, J. Chin. J. Org. Chem. 2018, 38, 1930.(in Chinese).
[1] ( 钱少平, 马尧睿, 高姗姗, 骆钧飞, 有机化学, 2018, 38, 1930.)
[1] (e) Zhou, P.; Hou, A.; Wang, Y. Chin. J. Org. Chem. 2018, 38, 156(in Chinese).
[1] ( 周鹏飞, 侯爱君, 王洋, 有机化学, 2018, 38, 156.)
[2] For reviews:see: (a) Smith, K.; El-HitiI, G.A. Curr. Org. Synth. 2004, 1, 253.
[2] (b) Saikia, A. J.; Borah, P.P. Chem. Rev. 2016, 116, 6837.
[3] For a review see:(a) Luo, J.; Xu, X.; Zhao, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37, 2873 (in Chinese).
[3] ( 骆钧飞, 徐星, 赵延超, 梁洪泽, 有机化学, 2017, 37, 2873 )
[3] For selected recent reports, see: (b) Okada, Y.; Yokozawa, M.; Akiba, M.; Oishi, K.; O-kawa, K.; Akeboshi, T.; Kawamura, Y.; Inokuma, S.; Nakamura, Y.; Nishimura, J. Org. Biomol. Chem. 2003, 1, 2506.
[3] (c) Bovonsombat, P.; Ali, R.; Khan, C.; Leykajarakul, J.; Pla-on, K.; Aphimanchindakul, S.; Pungcharoenpong, N.; Timsuea, N.; Arunrat, A.; Punpongjareorn, N. Tetrahedron. 2010, 66, 6928.
[3] (d) Racys, D. T.; Warrilow, C. E.; Pimlott, S. L.; Sutherland, A. Org. Lett. 2015, 17, 4782.
[3] (e) Nishimura, J.; Tang, R.-J.; Milcent, T.; Crousse, B. J. Org. Chem. 2018, 83, 930.
[4] For a review, see: Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C.T. Chem. Rev. 2006, 106, 3364.
[5] For reviews, see: (a) Podgors?ek, A.; Zupan, M.; Iskra, J. Angew. Chem., Int. Ed. 2009, 48, 8424.
[5] (b) Zhang, G.; Wang, Y.; Ding, C.; Liu, R.; Liang, X. Chin. J. Org. Chem. 2011, 31, 804 (in Chinese).
[5] For selected recent reports, see: (c) Werf, A.; Selander, N. Org. Lett. 2015, 17, 6210.
[5] For selected recent reports, see: (c) Werf, A.; Selander, N. Org. Lett. 2015, 17, 6210.
[5] (d) Satkar, Y.; Ramadoss, V.; Nahide, P. D.; García-Medina, E.; Juárez-Ornelas, K. A.; Alonso-Castro, A. J.; Chávez-Rivera, R.; Jiménez-Halla, J. O. C.; Solorio-Alvarado, C.R. RSC Adv. 2018, 8, 17806.
[5] (e) Sorabad, G. S.; Maddani, M.R. New J. Chem. 2019, 43, 6563.
[5] (f) Walter, C.; Fallows, N.; Kesharwani, T. ACS Omega, 2019, 4, 6538.
[5] (g) Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792.
[5] (h) Satkar, Y.; Yera-Ledesma, L. F.; Mali, N.; Patil, D.; Navarro-Santos, P.; Segura-Quezada, L. A.; Ramírez-Morales, P. I.; Solorio-Alvarado, C.R. J. Org. Chem. 2019, 84, 4149.
[5] (i) Segura-Quezada, A.; Satkar, Y.; Patil, D.; Mali, N.; Wrobel, K.; González, G.; Zárraga, R.; Ortiz-Alvarado, R.; Solorio-Alvarado, C.R. Tetrahedron Lett. 2019, 60, 1551.
[6] For selected recent reports, see: (a) Mal, K.; Sharma, A.; Maulik, P. R.; Das, I. . Chem.-Eur. J 2013, 20, 662.
[6] (b) Liu, C.; Dai, R.; Yao, G.; Deng, Y.J. Chem. Res. 2014, 38, 593.
[6] (c) Song, S.; Li, X.; Sun, X.; Yuan, Y.; Jiao, N. Green Chem. 2015, 17, 3285.
[6] (d) Karki, M.; Magolan, J. J. Org. Chem. 2015, 80, 3701.
[6] (e) Mal, K.; Kaur, A.; Haque, F.; Das, I. J. Org. Chem. 2015, 80, 640.
[6] (f) Sorabad, G. S.; Maddani, M.R. New J. Chem. 2019, 43, 6563.
[7] (a) Pandit, P. K.; Gayen, S.; Khamarui, S.; Chatterjee, N.; Maiti, D.K. Chem. Commun. 2011, 47, 6933.
[7] (b) Iskra, J.; Murphree, S.S. Tetrahedron Lett. 2017, 58, 645.
[7] (c) Xin, H.; Yang, S.; An, B.; An, Z. RSC Adv. 2017, 7, 13467.
[7] (d) Tomizuka, A.; Moriyama, K. Adv. Synth. Catal. 2019, 361, 1447.
[7] (e) Xin, H.; Hu, L.; Yu, J.; Sun, W.; An, Z. Catal. Commun. 2017, 93, 1.
[7] (f) Kajita, H.; Togni, A. ChemistrySelect. 2017, 2, 1117.
[7] (g) Cao, L.; Liu, B.; Liu, W.; Yao, G.; Cheng, Q. Chin. J. Org. Chem. 2011, 31, 2178.(in Chinese).
[7] ( 曹志凌, 刘冰, 刘玮炜, 姚国伟, 程青芳, 有机化学, 2011, 31, 2178.)
[8] Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. . Lett 2015, 17, 2886.
[9] For reviews, see: (a) Huang, Z.; Lumb, J.-P. ACS Catal. 2019, 9, 521.
[9] (b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
[9] (c) Yanagi, T.; Nogi, K.; Yorimitsu, H. Tetrahedron Lett. 2018, 59, 2951.
[10] (a) Ma, X.-T.; Tian, S.-K. Adv. Synth. Catal. 2013, 355, 337.
[10] (b) Ma, X.; Yu, J.; Jiang, M.; Wang, M.; Tang, L.; Wei, M.; Zhou, Q. Eur. J. Org. Chem. 2019,4593.
[11] Chauhan and coworkers reported a regioselective bromination of phenol with HBr at room temperature. The target 4-bromophenol could be obtained in 89% yield, but no experimental details could be found in the literature, see: Srivastava, S. K.; Chauhan P. M. S.; Bhaduri, A. P. Chem. Commun.1996, 2679 for details. We attempted for some times, but the target 3a was obtained only in low yield by using DMSO as a solvent at room temperature.
[12] Our experimental results are consistent with Jiao’s observation, ie the use of stoichiometric DMSO as the oxidant instead of as the solvent can greatly improve the reaction efficiency and selectivity, see Ref. [8].
[13] Kakarla, R.; Dulina, R. G.; Hatzenbuhler, N. T.; Hui, Y. W.; Sofia, M.J. J. Org. Chem. 1996, 61, 8347.
[14] Choudhury, L. H.; Parvin, T.; Khan, A. T. Tetrahedron 2009, 65, 9513.
[15] Ghiaci, M.; Sedaghat, M. E.; Ranjbari, S.; Gil, A. Appl. Catal. A: Gen. 2010, 384, 18.
[16] Mabic, S.; Lepoittevin, J.-P. Tetrahedron Lett. 1995, 36, 1705.
[17] Lou, S.-J.; Chen, Q.; Wang, Y.-F.; Xu, D.-Q.; Du, X.-H.; He, J.-Q.; Mao, Y.-J.; Xu, Z.-Y. ACS Catal. 2015, 5, 2846.
[18] Xiong, X.; Yeung, Y.-Y. ACS Catal. 2018, 8, 4033.
[19] Carrigan, M. D.; Sarapa, D.; Smith, R. C.; Wieland, L. C.; Mohan, R.S. J. Org. Chem. 2002, 67, 1027.
[20] Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012, 14, 2874.
[21] Diemer, V.; Begaud, M.; Leroux, F. R.; Colobert, F . Eur. J. Org. Chem. 2011,341.
[22] Kajita, H.; Togni, A. ChemistrySelect 2017, 2, 1117.
[23] Kerr, D. J.; Willis, A. C.; Flynn, B.L. Org. Lett. 2004, 6, 457.
[24] Liu, Y.; Kim, J.; Seo, H.; Park, S.; Chae, J. Adv. Synth. Catal. 2015, 357, 2205.
文章导航

/