研究论文

碱金属盐催化1,2,4-三唑与α,β-不饱和酮及二酰亚胺的氮杂Michael反应

  • 马奔 ,
  • 王刚刚 ,
  • 周红艳 ,
  • 杨靖亚
展开
  • a 西北师范大学化学化工学院 兰州 730070;
    b 甘肃农业大学理学院 兰州 730070

收稿日期: 2019-07-29

  修回日期: 2019-08-26

  网络出版日期: 2019-09-12

基金资助

国家自然科学基金(No.21362034)资助项目.

Alkali Salt-Catalyzed Aza-Michael Addition of 1,2,4-Triazole to α,β-Unsaturated Ketones and Imides

  • Ma Ben ,
  • Wang Ganggang ,
  • Zhou Hongyan ,
  • Yang Jingya
Expand
  • a College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070;
    b College of Science, Gansu Agricultural University, Lanzhou 730070

Received date: 2019-07-29

  Revised date: 2019-08-26

  Online published: 2019-09-12

Supported by

Project supported by the National Natural Science Foundation of China (No. 21362034).

摘要

发展了一种高效的碱金属盐催化1,2,4-三唑与αβ-不饱和酮及αβ-不饱和二酰亚胺的氮杂Michael加成反应的新方法,以中等到优异的产率得到目标产物.该方法原料易得,底物普适性好,反应条件温和,易实现克级规模的制备.产物容易转化为相应的γ-氨基醇.

本文引用格式

马奔 , 王刚刚 , 周红艳 , 杨靖亚 . 碱金属盐催化1,2,4-三唑与α,β-不饱和酮及二酰亚胺的氮杂Michael反应[J]. 有机化学, 2020 , 40(1) : 115 -124 . DOI: 10.6023/cjoc201907050

Abstract

An alkali salt-catalyzed highly efficient aza-Michael addition of 1,2,4-triazole to α,β-unsaturated ketones and imides has been developed, giving the desired products in moderate to excellent yields. The salient features of this reaction involve readily available starting materials, good substrate scope, mild condition, high efficiency and ease of scale-up. The product can be transformed into corresponding γ-aminoalcohol.

参考文献

[1] (a) Zheng, K.; Liu, X.; Feng, X. Chem. Rev. 2018, 118, 7586.
(b) Gmach, J.; Błażewska, K. M. Synthesis 2016, 48, 2681.
(c) Sánchez-Roselló, M.; Aceña, J. L.; Simón-Fuentes, A.; del Pozo, C. Chem. Soc. Rev. 2014, 43, 7430.
(d) Amara, Z.; Caron, J.; Joseph, D. Nat. Prod. Rep. 2013, 30, 1211.
(e) Wang, J.; Li, P.; Choy, P. Y.; Chan, A. S. C.; Kwong, F. Y. ChemCatChem 2012, 4, 917.
(f) Enders, D.; Wang, C.; Liebich, J. X. Chem. Eur. J. 2009, 15, 11058.
(g) Xu, L. W.; Xia, C. G. Eur. J. Org. Chem. 2005, 633.
[2] (a) Roy, T. K.; Parhi, B.; Ghorai, P. Angew. Chem., Int. Ed. 2018, 57, 9397.
(b) Barát, V.; Csókás, D.; Bates, R. W. J. Org. Chem. 2018, 83, 9088.
(c) Wu, L.; Jin, R.; Li, L.; Hu, X.; Cheng, T.; Liu, G. Org. Lett. 2017, 19, 3047.
(d) Yang, X.; Chen, Z.; Cai, Y.; Huang, Y. Y.; Shibata, N. Green Chem. 2014, 16, 4530.
(e) Amara, Z.; Caron, J.; Joseph, D. Nat. Prod. Rep. 2013, 30, 1211.
(f) Mikami, K.; Fustero, S.; Sánchez-Roselló, M.; Aceña, J. L.; Soloshonok, V.; Sorochinsky, A. Synthesis 2011, 3045.
(g) Weiner, B.; Szymański, W.; Janssen, D. B.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2010, 39, 1656.
(h) Vinogradov, M. G.; Turovaa, O. V.; Zlotin, S. G. Org. Biomol. Chem. 2019, 17, 3670.
[3] (a) Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37, 1044.
(b) Bartoli, G.; Bosco, M.; Marcantoni, E.; Petrini, M.; Sambri, L.; Torregiani, E. J. Org. Chem. 2001, 66, 9052.
(c) Reboule, I.; Gil, R.; Collin, J. Tetrahedron Lett. 2005, 46, 7761.
(d) Loh, T. P.; Wei, L. L. Synlett 1998, 975.
(e) Wabnitz, T. C.; Spencer, J. B. Tetrahedron Lett. 2002, 43, 3891.
(f) Azizi, N.; Saidi, M. R. Tetrahedron 2004, 60, 383.
(g) Stanley, L. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2009, 48, 7841.
(h) Sukhorukov, A. Y.; Sukhanova, A. A.; Zlotin, S. G. Tetrahedron 2016, 72, 6191.
[4] (a) Gandelman, M.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 2393.
(b) Wang, J.; Li, H.; Zu, L.; Wang, W. Org. Lett. 2006, 8, 1391.
(c) Uria, U.; Vicario, J. L.; Badía, D.; Carrillo, L. Chem. Commun. 2007, 2509.
(d) Wang, J.; Zu, L.; Li, H.; Xie, H.; Wang, W. Synthesis 2007, 2576.
(e) Madhavan, N.; Takatani, T.; Sherrill, C. D.; Weck, M. Chem. Eur. J. 2009, 15, 1186.
(f) Luo, G. S.; Zhang, S. L.; Duan, W. H.; Wang, W. Synthesis 2009, 1564.
(g) Lv, J.; Wu, H.; Wang, Y. Eur. J. Org. Chem. 2010, 11, 2073.
(h) Zhou, Y.; Li, X.; Li, W.; Wu, C.; Liang, X.; Ye, J. Synlett 2010, 2357.
(i) Guo, H. M.; Yuan, T. F.; Niu, H. Y.; Liu, J. Y.; Mao, R. Z. D.; Li, Y.; Qu, G. R. Chem. Eur. J. 2011, 17, 4095.
(j) Lee, S. J.; Youn, S. H.; Cho, C. W. Org. Biomol. Chem. 2011, 9, 7734.
(k) Li, H.; Zhao, J.; Zeng, L.; Hu, W. J. Org. Chem. 2011, 76, 8064.
(l) Uria, U.; Reyes, E.; Vicario, J. L.; Badía, D.; Carrillo, L. Org. Lett. 2011, 13, 336.
(m) Wang, J.; Wang, W.; Liu, X.; Hou, Z.; Lin, L.; Feng, X. Eur. J. Org. Chem. 2011, 11, 2039.
(n) Wu, H.; Tian, Z.; Zhang, L.; Huang, Y.; Wang, Y. Adv. Synth. Catal. 2012, 354, 2977.
(o) Lee, S. J.; Ahn, J. G.; Cho, C. W. Tetrahedron:Asymmetry 2014, 25, 1383.
(p) Chen, S. W.; Zhang, G. C.; Lou, Q. X.; Cui, W.; Zhang, S. S.; Hu, W. H.; Zhao, J. L. ChemCatChem 2015, 7, 1935.
(q) Kim, S.; Kang, S.; Kim, G.; Lee, Y. J. Org. Chem. 2016, 81, 4048.
(r) Bhagat, U. K.; Peddinti, R. K. Synlett 2018, 29, 99.
(s) Chittimalla, S. K.; Nakka, S.; Koodalingam, M.; Bandi, C. Synlett 2018, 29, 57.
(t) Bhagat, U. K.; Peddinti, R. K. J. Org. Chem. 2018, 83, 793.
[5] (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
(b) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290.
(c) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
(d) Towns, A. D. Dyes Pigm. 1999, 42, 3.
(e) Hughes, G.; Bryce, M. R. J. Mater. Chem. 2005, 15, 94.
(f) Holmes, G.; Rice, A.; Snyder, K. C. R. J. Mater. Sci. 2006, 41, 4105.
(g) Kusama, H.; Sugihara, H.; Sayama, K. J. Phys. Chem. C 2009, 113, 20764.
[6] Ghannoum, M. A.; Rice, L. B. Clin. Microbiol. Rev. 1999, 12, 50.
[7] (a) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1996, 25, 117.
(b) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015.
(c) Jagerovic, N.; Hernandez-Folgado, L.; Alkorta, I.; Goya, P.; Navarro, M.; Serrano, A.; de Fonseca, F. R.; Dannert, M. T.; Alsasua, A.; Suardiaz, M.; Pascual, D.; Martín, M. I. J. Med. Chem. 2004, 47, 2939.
(d) Papadopoulou, M. V.; Trunz, B. B.; Bloomer, W. D.; McKenzie, C.; Wilkinson, S. R.; Prasittichai, C.; Brun, R.; Kaiser, M.; Torreele, E. J. Med. Chem. 2011, 54, 8214.
(e) Moulin, A.; Demange, L.; Ryan, J.; Mousseaux, D.; Sanchez, P.; Bergé, G.; Gagne, D.; Perrissoud, D.; Locatelli, V.; Torsello, A.; Galleyrand, J. C.; Fehrentz, J. A.; Martinez, J. J. Med. Chem. 2008, 51, 689.
(f) Fustero, S.; Pina, B.; Salavert, E.; Navarro, A.; de Arellano, M. C. R.; Fuentes, A. S. J. Org. Chem. 2002, 67, 4667.
[8] (a) Huntsman, E.; Balsells, J. Eur. J. Org. Chem. 2005, 3761.
(b) Larsen, S. D.; DiPaolo, B. A. Org. Lett. 2001, 3, 3341.
(c) Stocks, M. J.; Cheshire, D. R.; Reynold, R. Org. Lett. 2004, 6, 2969.
(d) Zhang, J. P.; Lin, Y. Y.; Huang, X. C.; Chen, X. M. J. Am. Chem. Soc. 2005, 127, 5495.
(e) Ueda, S.; Nagasawa, H. J. Am. Chem. Soc. 2009, 131, 15080.
(f) Guru, M. M.; Punniyamurthy, T. J. Org. Chem. 2012, 77, 5063.
(g) Tam, A.; Armstrong, I. S.; La Cruz, T. E. Org. Lett. 2013, 15, 3586.
(h) Xu, H.; Ma, S.; Xu, Y.; Bian, L.; Ding, T.; Fang, X.; Zhang, W.; Ren, Y. J. Org. Chem. 2012, 80, 1758.
(i) Huang, H.; Guo, W.; Wu, W.; Li, C.; Jiang, H. Org. Lett. 2015, 17, 2894.
(j) Song, L.; Tian, X.; Lv, Z.; Li, E.; Wu, J.; Liu, Y.; Yu, W.; Chang, J. J. Org. Chem. 2015, 80, 7219.
(k) Chen, Z.; Li, H.; Dong, W.; Miao, M.; Ren, H. Org. Lett. 2016, 18, 1334.
(l) Yu, W.; Huang, Y.; Li, J.; Tang, X.; Wu, W.; Jiang, H. J. Org. Chem. 2018, 83, 9334.
(m) Li, H.; Wu, X.; Hao, W.; Li, H.; Zhao, Y.; Wang, Y.; Lian, P.; Zheng, Y.; Bao, X.; Wan, X. Org. Lett. 2018, 20, 5224.
[9] Liu, B. K.; Wu, Q.; Qian, X. Q.; Lv, D. S.; Lin, X. F. Synthesis 2007, 2653.
[10] Uddin, M. I.; Nakano, K.; Ichikawa, Y.; Kotsuki, H. Synlett 2008, 1402.
[11] Dinér, P.; Nielsen, M.; Marigo, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 1983.
[12] Zhou, Y. F.; Li, X.; Li, W. L.; Wu, C. L.; Liang, X. M.; Ye, J. X. Synlett 2008, 1402.
[13] (a) Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 4442.
(b) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 9928.
(c) Madhavan, N.; Weck, M. Adv. Synth. Catal. 2008, 350, 419.
(d) Mazet, C.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2008, 47, 1762.
(e) Madhavan, N.; Sommer, W.; Weck, M. J. Mol. Catal. A:Chem. 2011, 334, 1.
[14] Yang, J.; Ma, B.; Zhou, H.; Zhan, B.; Li, Z. Chin. J. Org. Chem. 2015, 35, 121(in Chinese). (杨靖亚, 马奔, 周红艳, 占宝华, 李政, 有机化学, 2015, 35, 121.)
[15] Yang, J.; Bao, Y.; Zhou, H.; Li, T.; Li, N.; Li, Z. Synthesis 2016, 48, 1139.
[16] Zhou, H.; Xiang, X.; Ma, B.; Wang, G.; Zhang, Z.; Yang, J. Synthesis 2019, 51, 3142.
文章导航

/