综述与进展

含半夹心铱/铑/钌结构基元的离散型金属环状化合物的研究进展

  • 刘金宝 ,
  • 李鹏 ,
  • 姚子健
展开
  • a 上海城建职业学院 上海 201415;
    b 上海应用技术大学化学与环境工程学院 上海 201418

收稿日期: 2019-08-05

  修回日期: 2019-09-17

  网络出版日期: 2019-10-09

基金资助

国家自然科学基金(No.21601125)、上海市晨光计划(Nos.16CG64,18CGB12)资助项目.

Recent Progress of Discrete Metallacycles Based on the Half-Sandwich Ir/Rh/Ru Motifs

  • Liu Jinbao ,
  • Li Peng ,
  • Yao Zijian
Expand
  • a Department of Science and Technology, Shanghai Urban Construction Vocational College, Shanghai 201415;
    b School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418

Received date: 2019-08-05

  Revised date: 2019-09-17

  Online published: 2019-10-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 21601125), the Chenguang Scholar of Shanghai Municipal Education Commission (Nos. 16CG64, 18CGB12).

摘要

由于离散型金属环状化合物在主客体化学、气体吸附、分子识别及催化等领域被广泛应用,因此,构筑新型金属环状化合物并研究它们的物理化学性质及应用成为无机化学、有机化学和超分子化学中热门研究方向之一.具有半夹心结构的钌、铱和铑有机金属单元在形成金属环状化合物时具有以下的优势:增强了化合物的溶解性,屏蔽住金属的一半以减少反应的复杂性,易于修饰得到不同结构的产物.综述了近年来以半夹心结构的钌、铱和铑结构基元的离散型金属框架化合物的组装合成和应用.

本文引用格式

刘金宝 , 李鹏 , 姚子健 . 含半夹心铱/铑/钌结构基元的离散型金属环状化合物的研究进展[J]. 有机化学, 2020 , 40(2) : 364 -375 . DOI: 10.6023/cjoc201908009

Abstract

Discrete metallacycle complexes have attracted considerable attention because of their widely used in host-guest chemistry, gas adsorption, molecular recognition and catalysis. Thus exploring new framework complexes, studying their physical and chemical properties and applications have become one of the most active and exciting areas of inorganic chemistry, organic chemistry and supramolecular chemistry. Half-sandwich organometallic units based on ruthenium, iridium and rhodium are often utilized to prepare diverse metallacylce complexes due to the following advantages:the solubility of these metal complexes can be enhanced, the hemisphere of the metal center is perfectly shielded, minimizing the complexity of reactions, and the products with different structures are easily synthesized. In this paper, the synthesis and application of discrete type metal framework complexes with half-sandwich structures of ruthenium, iridium and rhodium are reviewed.

参考文献

[1] Swiegers, G. F.; Malefetse, T. J. Chem. Rev. 2000, 100, 3483.
[2] Thomas, J. A. Chem. Soc. Rev. 2007, 36, 856.
[3] Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.
[4] Gianneschi, N. C.; Masar, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825.
[5] James, S. L. Chem. Soc. Rev. 2003, 32, 276.
[6] Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196.
[7] Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810.
[8] Pluth, M. D.; Raymond, K. N. Chem. Soc. Rev. 2007, 36, 161.
[9] Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418.
[10] Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2009, 42, 1650.
[11] Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Chem. Soc. Rev. 2008, 37, 247.
[12] (a) Harris, K.; Fujita, D.; Fujita, M. Chem. Commun. 2013, 49, 6703.
(b) Ma, L.-L.; An, Y.-Y.; Sun, L.-Y.; Wang, Y.-Y.; Hahn, F. E.; Han, Y.-F. Angew. Chem., Int. Ed. 2019, 58, 3986.
(c) Wang, Y.-S.; Feng, T.; Wang, Y.-Y.; Hahn, F. E.; Han, Y.-F. Angew. Chem., Int. Ed. 2018, 57, 15767.
(d) Sun, L.-Y.; Sinha, N.; Yan, T.; Wang, Y.-S.; Tan, T. T. Y.; Yu, L.; Han, Y.-F.; Hahn, F. E. Angew. Chem., Int. Ed. 2018, 57, 5161.
(e) Gan, M.-M.; Liu, J.-Q.; Zhang, L.; Wang, Y.-Y.; Hahn, F. E.; Han, Y.-F. Chem. Rev. 2018, 118, 9587.
[13] Cook, T. R.; Zheng, Y. R.; Stang, P. J. Chem. Rev. 2013, 113, 734.
[14] Granzhan, A.; Riis-johannessen, T.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2010, 49, 5515.
[15] Forgan, R. S.; Sauvage, J. P.; Stoddart, F. J. Chem. Rev. 2011, 111, 5434.
[16] Fujita, M.; Yazaki, J.; Ogura, K. J. Am. Chem. Soc. 1990, 112, 5645.
[17] Stang, P. J.; Cao, D.-H. J. Am. Chem. Soc. 1994, 116, 4981.
[18] Klausmeyer, K. K.; Rauchfuss, T. B.; Wilson, S. R. Angew. Chem., Int. Ed. 1998, 37, 1694.
[19] Severin, K. Chem. Commun. 2006, 3859.
[20] Han, Y.-F.; Jin, G.-X. Chem. Soc. Rev. 2014, 43, 2799.
[21] Karkas, M. D.; Verho, O.; Johnston, E. V.; Akermark, B. Chem. Rev. 2014, 114, 11863.
[22] Yao, Z.-J.; Li, K.; Li, P.; Deng, W. J. Organomet. Chem. 2017, 846, 208.
[23] Thomsen, J. M.; Huang, D. L.; Crabtree, R. H.; Brudvig, G. W. Dalton Trans. 2015, 44, 12452.
[24] Han, Y.-F.; Jia, W.-G.; Yu, W.-B.; Jin, G.-X. Chem. Soc. Rev. 2009, 38, 3419.
[25] Han, Y.-F.; Jin, G.-X. Acc. Chem. Res. 2014, 47, 3571.
[26] Zhang, Y.-Y.; Gao, W.-X.; Lin, L.; Jin, G.-X. Coord. Chem. Rev. 2017, 344, 323.
[27] Han, Y.-F.; Lin, Y.-J.; Jia, W.-G.; Weng, L.-H.; Jin, G.-X. Organometallics 2007, 26, 5848.
[28] (a) Zhang, W.-Z.; Han, Y.-F.; Lin, Y.-J.; Jin, G.-X. Organometallics 2010, 29, 2842.
(b) Gou, X.-X.; Peng, J.-X.; Das, R.; Wang, Y.-Y.; Han, Y.-F. Dalton Trans. 2019, 48, 7236.
(c) Zhang, W.-Y.; Lin, Y.-J.; Han, Y.-F.; Jin, G.-X. J. Am. Chem. Soc. 2016, 138, 10700.
[29] Han, Y.-F.; Jia, W.-G.; Lin, Y.-J.; Jin, G.-X. Angew. Chem., Int. Ed. 2009, 48, 6234.
[30] Han, Y.-F.; Fei, Y.; Jin, G.-X. Dalton Trans. 2010, 39, 3976.
[31] Han, Y.-F.; Lin, Y.-J.; Jin, G.-X. Dalton Trans. 2011, 40, 10370.
[32] Lin, Y.-J.; Han, Y.-F.; Jin, G.-X. J. Organomet. Chem. 2012, 708, 31.
[33] Zhang, H.-N.; Gao, W.-X.; Deng, Y.-X.; Lin, Y.-J.; Jin, G.-X. Chem. Commun. 2018, 54, 1559.
[34] Bergamo, A.; Gaiddon, C.; Schellens, J. H. M.; Beijnen, J. H.; Sava, G. J. Inorg. Biochem. 2012, 106, 90.
[35] Rademaker-lakhai, J. M.; Van den Bongard, D.; Pluim, D.; Beijnen, J. H.; Schellens, J. H. M. Clin. Cancer Res. 2004, 10, 3717.
[36] Mari, C.; Pierroz, V.; Ferrari, S.; Gasser, G. Chem. Sci. 2015, 46, 2660.
[37] Schmitt, F.; Govindaswamy, P.; Suss-Fink, G.; Ang, W. H.; Dyson, P. J.; Juillerat-Jeanneret, L.; Therrien, B. J. Med. Chem. 2008, 51, 1811.
[38] Mannancherril, V.; Therrien, B. Inorg. Chem. 2018, 57, 3626.
[39] Mattsson, J.; Govindaswamy, P.; Renfrew, A. K.; Dyson, P. J.; Štěpnička, P.; Süss-Fink, G.; Therrien, B. Organometallics 2009, 28, 4350.
[40] Gupta, G.; Murray, B. S.; Dyson, P. J.; Therrien, B. Materials 2013, 6, 5352.
[41] Liu, J.-J.; Lin, Y.-J.; Jin, G.-X. Organometallics 2014, 33, 1283.
[42] Singh, N.; Jang, S.; Jo, J. H.; Kim, D. H.; Park, D. Y.; Kim, I.; Kim, H.; Kang, S. C.; Chi, K. W. Chem.-Eur. J. 2016, 22, 16157.
[43] Gupta, G.; Das, A.; Ghate, N. B.; Kim, T. H.; Ryu, J. Y.; Lee, J.; Mandal, N.; Lee, C. Y. Chem. Commun. 2016, 52, 4274.
[44] Gupta, G.; Das, A.; Panja, S.; Ryu, J. Y.; Lee, J.; Mandal, N.; Lee, C. Y. Chem.-Eur. J. 2017.23, 17199.
[45] Wu, T.; Weng, L.-H.; Jin, G.-X. Chem. Commun. 2012, 48, 4435.
[46] Guo, B.-B.; Gao, W.-X.; Lin, Y.-J.; Jin, G.-X. Dalton Trans. 2018, 47, 7701.
[47] Han, Y.-F.; Lin, Y.-J.; Jia, W.-G.; Jin, G.-X. Dalton Trans. 2009, 2077.
[48] Han, Y.-F.; Li, H.; Zheng, Z.-F.; Jin, G.-X. Chem.-Asian J. 2012, 7, 1243.
[49] Han, Y.-F.; Jin, G.-X. Chem.-Asian J. 2011, 6, 1348.
[50] Han, Y.-F.; Lin, Y.-J.; Hor, T. S. A.; Jin, G.-X. Organometallics 2012, 31, 995.
[51] Therrien, B.; Suss-fink, G.; Govindaswamy, P.; Renfrew, A. K.; Dyson, P. J. Angew. Chem., Int. Ed. 2008, 47, 3773.
[52] Yi, J. W.; Barry, N. P. E.; Furrer, M. A.; Zava, O.; Dyson, P. J.; Therrien, B.; Kim, B. H. Bioconjugate Chem. 2012, 23, 461.
[53] Furrer, M. A.; Schmitt, F.; Wiederkehr, M.; Juillerat-Jeanneret, L.; Therrien, B. Dalton Trans. 2012, 41, 7201.
[54] Pitto-barry, A.; Barry, N. P. E.; Zava, O.; Deschenaux, R.; Dyson, P. J.; Therrien, B. Chem.-Eur. J. 2011, 17, 1966.
[55] Therrien, B. CrystEngComm 2015, 17, 484.
[56] Pitto-barry, A.; Zava, O.; Dyson, P. J.; Deschenaux, R.; Therrien, B. Inorg. Chem. 2012, 51, 7119.
[57] Chen, J.; Qiu, X.; Ouyang, J.; Kong, J.; Zhong, W.; Xing, M. Biomacromolecules 2014, 12, 3601.
[58] Minghui, Y.; Fritz, W.; Biprajit, S.; Amine, G.; Pierre, B.; Lucie, R.; Bruno, T. Organometallics 2014, 33, 5043.
[59] Singh, J.; Park, D. W.; Kim, D. H.; Singh, N.; Kang, S. C.; Chi, K. W. ACS Omega 2019, 4, 10810.
[60] Vajpayee, V.; Lee, S.; Kang, S. C.; Cook, T. R.; Kim, H.; Kim, D. W.; Verma, S.; Lah, M. S.; Kim, I. S.; Wang, M.; Stang, P. J.; Chi, K. W. Dalton Trans. 2013, 42, 466.
[61] Vajpayee, V.; Yang, Y. J.; Kang, S. C.; Kim, C.; Kim, I. S.; Wang, M.; Stang, P. J.; Chi, K. W. Chem. Commun. 2011, 47, 5184.
[62] Wang, M.; Vajpayee, V.; Shanmugaraju, S.; Zheng, Y. R.; Zhao, Z. G.; Kim, H.; Mukherjee, P. S.; Chi, K. W.; Stang, P. J. Inorg. Chem. 2011, 50, 1506.
[63] Vajpayee, V.; Song, Y. H.; Cook, T. R.; Kim, H.; Lee, Y.; Stang, P. J.; Chi, K. W. J. Am. Chem. Soc. 2011, 133, 19646.
[64] Vajpayee, V.; Song, Y.-H.; Jung, Y.-J.; Kang, S.-C.; Kim, H.; Kim, I. S.; Wang, M.; Cook, T. R.; Stang, P. J.; Chi, K. W. Dalton Trans. 2012, 41, 3046.
[65] Vajpayee, V.; Lee, S.; Park, J. W.; Dubey, A.; Kim, H.; Cook, T. R.; Stang, P. J.; Chi, K. W. Organometallics 2013, 32, 1563.
[66] Singh, N.; Jo, J. H.; Song, Y. H.; Kim, H.; Kim, D.; Lah, M. S.; Chi, K. W. Chem. Commun. 2015, 51, 4492.
[67] Han, Y.-F.; Lin, Y.-J.; Weng, L.-H.; Berke, H.; Jin, G.-X. Chem. Commun. 2008, 350.
[68] Barry, N. P. E.; Austeri, M.; Lacour, J.; Therrien, B. Organometallics 2009, 28, 4894.
[69] Barry, N. P. E.; Zava, O.; Dyson, P. J.; Therrien, B. Aust. J. Chem. 2010, 63, 1529.
[70] Oldacre, A. N.; Friedman, A. E.; Cook, T. R. J. Am. Chem. Soc. 2017, 139, 1424.
[71] Ryu, J. Y.; Park, Y. J.; Park, H. R.; Saha, M. L.; Stang, P. J.; Lee, J. J. Am. Chem. Soc. 2015, 137, 13018.
[72] Ryu, J. Y.; Wi, E. H.; Pait, M.; Lee, S.; Stang, P. J.; Lee, J. Inorg. Chem. 2017, 56, 5471.
[73] Singh, N.; Singh, J.; Kim, D.; Kim, D. H.; Kim, E. H.; Lah, M. S.; Chi, K. W. Inorg. Chem. 2018, 57, 3521.
[74] Huang, S.-L.; Hor, T. S. A.; Jin, G.-X. Coord. Chem. Rev. 2017, 333, 1.
[75] Ayme, J. F.; Beves, J. E.; Leigh, D. A.; McBuney, R. T.; Rissanen, K.; Schultz, D. Nat. Chem. 2012, 4, 15.
[76] Thorp-greenwood, F. L.; Kulak, A. N.; Hardie, M. J. Nat. Chem. 2015, 7, 526.
[77] Mcconnell, A. J.; Wood, C. S.; Neelakandan, P. P.; Nitschke, J. R. Chem. Rev. 2015, 115, 7729.
[78] Smulders, M. M. J.; Riddell, I. A.; Browne, C.; Nitschke, J. R. Chem. Soc. Rev. 2013, 42, 1728.
[79] Wang, W.; Wang, Y.-X.; Yang, H.-B. Chem. Soc. Rev. 2016, 45, 2656.
[80] Lu, Y.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. Chin. J. Chem. 2018, 36, 106.
[81] Huang, S.-L.; Lin, Y.-J.; Hor, T. S. A.; Jin, G.-X. J. Am. Chem. Soc. 2013, 135, 8125.
[82] Huang, S.-L.; Lin, Y.-J.; Lin, Z.-H.; Jin, G.-X. Angew. Chem., Int. Ed. 2014, 53, 11218.
[83] Lu, Y.; Deng, Y.-X.; Lin, Y.-J.; Han, Y.-F.; Weng, L.-H.; Lin, Z.-H.; Jin, G.-X. Chem 2017, 3, 110.
[84] Zhang, L.; Lin, L.; Liu, D.; Lin, Y.-J.; Lin, Z.-H.; Jin, G.-X. J. Am. Chem. Soc. 2017, 139, 1653.
[85] Lu, Y.; Zhang, H.-N.; Jin, G.-X. Acc. Chem. Res. 2018, 51, 2148.
[86] Kim, T.; Singh, N.; Oh, J.; Kim, E. H.; Jung, J.; Kim, H.; Chi, K. W. J. Am. Chem. Soc. 2016, 138, 8368.
[87] Singh, N.; Kim, D.; Kim, D. H.; Kim, E. H.; Kim, H.; Lah, M. S.; Chi, K. W. Dalton Trans. 2017, 46, 571.
[88] Song, Y.-H.; Singh, N.; Jung, J.; Kim, H.; Kim, E. H.; Cheong, H. K.; Kim, Y. Angew. Chem., Int. Ed. 2016, 55, 2007.
[89] Mishra, A.; Dubey, A.; Min, J. W.; Kim, H.; Stang, P. J.; Chi, K. W. Chem. Commun. 2014, 50, 7542.
文章导航

/