研究论文

酰胺硫醚桥连1,3-硒唑和1,2,4-三唑衍生物合成及其对细胞分裂周期25磷酸酯酶B(Cdc25B)抑制活性

  • 张成路 ,
  • 王华玉 ,
  • 于向坤 ,
  • 杨敬怡 ,
  • 李传银 ,
  • 宫荣庆 ,
  • 宋府璐 ,
  • 孙越冬
展开
  • 辽宁师范大学化学化工学院 大连 116029

收稿日期: 2019-07-14

  修回日期: 2019-09-27

  网络出版日期: 2019-10-12

基金资助

辽宁省教育厅科学技术研究(No.2009A426)资助项目.

Synthesis of Amide Thioether Bridged 1,3-Selenazole and 1,2,4-Triazole Derivatives and Their Inhibitory Activity against Cell Division Cycle Phosphatase B (Cdc25B)

  • Zhang Chenglu ,
  • Wang Huayu ,
  • Yu Xiangkun ,
  • Yang Jingyi ,
  • Li Chuanyin ,
  • Gong Rongqin ,
  • Song Fulu ,
  • Sun Yuedong
Expand
  • School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029

Received date: 2019-07-14

  Revised date: 2019-09-27

  Online published: 2019-10-12

Supported by

Project supported by the Science and Technology Research Program of Liaoning Provincial Department of Education (No. 2009A426).

摘要

细胞分裂周期25磷酸酯酶B(Cdc25B)与致癌转化有关,是潜在的抗癌疗法的药物靶标.为筛选Cdc25B抑制剂,以1,3-硒唑为核心组块,利用酰胺硫醚键与1,2,4-三唑席夫碱活性组块桥连成目标化合物2-(1,2,4-三唑-3-基)硫代-N-(4-苯基-1,3-硒唑-2-基)乙酰胺(TATS).首先为验证将1,3-硒唑作为核心组块的合理性,选择了苯环未被修饰的TATS1与Cdc25B进行分子对接模拟,结果表明,1,3-硒唑能紧密地嵌入Cdc25B结构中,与Cdc25B的重要催化位点Arg492发生N-H…PI非键弱相互作用,发挥了核心作用.酰胺羰基氧原子与Arg492和Arg488形成氢键,表明酰胺硫醚键引入合理.在理论对接研究的基础上,通过对1,2,4-三唑席夫碱活性组块中两个区域用不同基团修饰,设计并合成了13个新型目标化合物TATS1~TATS13,对比测试了目标化合物和重要中间体对Cdc25B的抑制活性.结果表明,其中12个目标化合物生物活性优于阳性参照物Na3VO4,1,2,4-三唑席夫碱两个区域的不同修饰对抑制活性有明显影响,实现了活性叠加效应,表明该类结构化合物有望成为潜在的Cdc25B抑制剂.

本文引用格式

张成路 , 王华玉 , 于向坤 , 杨敬怡 , 李传银 , 宫荣庆 , 宋府璐 , 孙越冬 . 酰胺硫醚桥连1,3-硒唑和1,2,4-三唑衍生物合成及其对细胞分裂周期25磷酸酯酶B(Cdc25B)抑制活性[J]. 有机化学, 2020 , 40(2) : 432 -439 . DOI: 10.6023/cjoc201907020

Abstract

The cell division cycle 25 phosphatase B (Cdc25B) is involved in carcinogenic transformation and is a potential drug target for anticancer therapy. In order to screen Cdc25B inhibitors, 1,3-selenazole was selected as the core block, and 1,2,4-triazole Schiff base was bridged into 2-(1,2,4-triazol-3-yl)thio-N-(4-phenyl-1,3-selenazolyl-2-yl)acetamide (TATS) by the amide thioether bond. The molecular docking simulation of TATS1 with Cdc25B was first performed to identify the rationality of the core function of 1,3-selenazole. The results show that 1,3-selenazole can be tightly embedded in the Cdc25B structure and perform N-H…PI non-bond weak interaction with the important catalytic site Arg492, which indicates that 1,3-selenazole plays a central role. The amide carbonyl oxygen atom forms a hydrogen bond with Arg492 and Arg488, indicating that the introduction of the amide thioether bond is reasonable. Based on the theoretical docking study, thirteen new target compounds TATS1~TATS13 were designed and synthesized through modification in two regions of 1,2,4-triazole Schiff base. The inhibition against Cdc25B of target molecules and important intermediates was tested respectively. As a result, the inhibitory activities of the intermediates are not good, 12 target compounds have better biological activity than the positive reference substance Na3VO4, the modifications of two regions of 1,2,4-triazole also have a significant effect, which suggests that these compounds are expected to be a potential inhibitor of Cdc25B.

参考文献

[1] Park, H.; Bahn, Y. J.; Jung, S. K.; Jeong, D. G.; Lee, S. H.; Seo, I.; Yoon, T. S.; Kim, S. J.; Ryu, S. E. Eur. J. Med. Chem. 2008, 51, 5533.
[2] Song, W. Z.; Zheng, N. Org. Lett. 2017, 19, 6200.
[3] Song, W. Z.; Zheng, N.; Li, M.; Dong, K.; Li, J. H.; Ullah, K.; Zheng, Y. B. Org. Lett. 2018, 20, 6705.
[4] Pirrung, M. C.; Blume, F. J. Org. Chem. 1999, 64, 3642.
[5] Baston, E.; Palusczak, A.; Hartmann, R. W. Eur. J. Med. Chem. 2000, 35, 931.
[6] Chimenti, F.; Bizzarri, B.; Bolasco, A.; Secci, D.; Chimenti, P.; Granese, A.; Carradori, S.; Ascenzio, M. D.; Lilli, D.; Rivanera, D. Eur. J. Med. Chem. 2011, 46, 378.
[7] Bondock, S.; Naser, T.; Ammar, Y. A. Eur. J. Med. Chem. 2013, 62, 270.
[8] Makam, P.; Kankanala, R.; Prakash, A.; Kannan, T. Eur. J. Med. Chem. 2013, 69, 564.
[9] Yuan, J. W.; Wang, S. F.; Luo, Z. L.; Qiu, H. Y.; Wang, P. F.; Zhang, X.; Yang, Y. A.; Yin, Y.; Zhang, F.; Zhu, H. L. Bioorg. Med. Chem. Lett. 2014, 24, 2324.
[10] Chandrappa, S.; Chandru, H.; Sharada, A. C.; Vinaya, K.; Ananda, Kumar, C. S.; Thimmegowda, N. R.; Nagegowda, P.; Karuna Kumar, M.; Rangappa, K. S. Med. Chem. Res. 2010, 19, 236.
[11] Lu, Y.; Li, C. M.; Wang, Z.; Ross, C. R.; Chen, J.; Dalton, J. T.; Li, W.; Miller, D. D. J. Org. Chem. 2009, 52, 1701.
[12] Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; Lopez, O. C.; Cara, C. L.; Basso, G.; Viola, G.; Khedr, M.; Balzarini, J.; Mahboobi, S.; Sellmer, A.; Brancale, A. J. Org. Chem. 2009, 52, 5551.
[13] Franchetti, P,; Cappellacci, L.; Sheikha, G. A.; Jayaram, H. N.; Gurudutt, V. V.; Sint, T.; Schneider, B. P.; Jones, W. D.; Goldstein, B. M.; Perra, G.; Montis, A. J. Cheminformatics 2010, 25, 1731.
[14] Zhao, G. L.; Shi, X.; Zhang, J. P.; Liu, J. F.; Xian, H. D.; Shao, L. X. Sci. China:Chem. 2010, 40, 1525(in Chinese). (赵国良, 施霞, 张均平, 刘建风, 成会朵, 邵邻相, 中国科学:化学, 2010, 40, 1525.)
[15] Guan, Q. Y.; Xia, S.; Shen, J. B.; Zhao, G. L. Sci. China:Chem. 2013, 56, 588.
[16] Rohr W.; Staab, H. A. Angew. Chem., Int. Ed. 1965, 4, 1073.
[17] Xie, W.; Zhang, J.; Ma, X.; Yang, W. Q.; Zhou, Y.; Tang, X. F.; Zou, Y.; Li, H.; He, J. J.; Xie, S. M.; Zhao, Y. H.; Liu, F. P. Chem. Biol. Drug Des. 2015, 86, 1087.
[18] Yang, B.; He, Q. J.; Zhu, D. Y.; Lou, Y. J.; Fang, R. Y. Cancer Chemother. Pharmacol. 2006, 57, 268.
[19] Xia, L.; Fan, Z. J.; Yao, J. H.; Li, W.; Qua, F. Q.; Peng, L. Bioorg. Med. Chem. Lett. 2006, 16, 2693.
[20] Aiken, S. P.; Brown, W. M. Front. Biosci. 2000, 5, 124.
[21] Bekircan, O.; Bektas, H. Molecules 2006, 11, 469.
[22] Ghosh, S.; Tiwari, P.; Pandey, S.; Misra, A. K.; Chaturvedi, V.; Gaikwad, A.; Bhatnagar, S.; Sinha, S. Bioorg. Med. Chem. Lett. 2008, 18, 4002.
[23] Ozkay, Y.; Işikdağ, I.; Incesu, Z.; Akalın, G. Eur. J. Med. Chem. 2010, 45, 3320.
[24] Zhang, C. L.; Sun, X. N.; Pu, Y. X.; Li, C. Y.; Sun, L. J.; Wang, J.; Li, Y. Z. Chin. J. Org. Chem. 2017, 37, 440(in Chinese). (张成路, 孙晓娜, 蒲雨昕, 李传银, 孙丽杰, 王静, 李益政, 有机化学, 2017, 37, 440.)
[25] Panda, S.; Nayak, S. Supramol. Chem. 2015, 27, 679.
[26] Zhang, C. L.; Tang, J.; Yin, L. Y.; Xi, H.; Guo, Y.; Sun, L. J. Chin. J. Org. Chem. 2016, 36, 358(in Chinese). (张成路, 唐杰, 殷立莹, 袭焕, 国阳, 孙丽杰, 有机化学, 2016, 36, 358.)
[27] Liu, B.; Xu, C. D.; Zhou, X. J. Chem. Reag. 1993, 15, 334. (刘波, 徐才丁, 周洵钧, 化学试剂, 1993, 15, 334.)
[28] Wolf, L.; Quoos, N.; Mayer, J. C. P.; Souza, D. D.; Sauer, A. C.; Meichtry, L.; Bortolotto, V.; Prigol, M.; Rodrigues Oscar, E. D.; Dornelles, L. Tetrahedron Lett. 2016, 57, 1031.
[29] Rakse, M.; Karthikeyan, C.; Deora, G. S.; Moorthy, N. S. H. N.; Rathore, V.; Rawat, A. K.; Srivastava, A. K.; Trivedi, P. Eur. J. Med. Chem. 2013, 70, 469.
文章导航

/