研究简报

抗革兰氏阴性菌耐格霉素的形式合成

  • 张世举 ,
  • 李晓彤 ,
  • 王燕 ,
  • 郑宇璁 ,
  • 韩世清 ,
  • 郁惠蕾 ,
  • 黄莎华
展开
  • a 上海应用技术大学化学与环境工程学院 上海 201418;
    b 南京工业大学生物与制药工程学院 南京 211816;
    c 中国科学院上海有机化学研究所 分子合成卓越中心 天然产物有机合成化学重点实验室 上海 200032;
    d 华东理工大学 生物反应器工程国家重点实验室 上海生物制造技术协同创新中心 上海 200237

收稿日期: 2019-08-16

  修回日期: 2019-10-10

  网络出版日期: 2019-10-25

基金资助

国家自然科学基金(No.21402121)和上海市杨帆计划(No.16YF1414400)资助项目.

Formal Synthesis of Gram-Negative Antibiotic Negamycin

  • Zhang Shiju ,
  • Li Xiaotong ,
  • Wang Yan ,
  • Zheng Yucong ,
  • Han Shiqing ,
  • Yu Huilei ,
  • Huang Shahua
Expand
  • a School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418;
    b College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816;
    c Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    d State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation, Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237

Received date: 2019-08-16

  Revised date: 2019-10-10

  Online published: 2019-10-25

Supported by

Project supported by the National Natural Science Foundation of China (No. 21402121) and the Shanghai Science and Technology Commission for the Shanghai Sailing Program (No. 16YF1414400).

摘要

耐格霉素是具有抗革兰氏阴性菌活性的天然产物.以廉价易得的3-羰基-4-氯丁酸乙酯为原料,以八步29%的总收率实现了耐格霉素的形式合成.该工作改进了文献的合成路线,利用生物催化不对称还原高立体选择性引入C-5位的手性羟基,并将危险的叠氮引入反应放在合成后期,降低合成路线的操作风险.分子中C-3位的仲碳胺基手性中心通过Ellamn试剂介导的不对称Mannich反应构建.该路线易于放大,有望为构建耐格霉素类似物分子库以及高通量药物筛选奠定基础.

本文引用格式

张世举 , 李晓彤 , 王燕 , 郑宇璁 , 韩世清 , 郁惠蕾 , 黄莎华 . 抗革兰氏阴性菌耐格霉素的形式合成[J]. 有机化学, 2020 , 40(2) : 521 -527 . DOI: 10.6023/cjoc201908025

Abstract

Negamycin is a potent gram-negative antibiotic. By using commercial available ethyl 4-chlorobutyrate as starting material, the formal synthesis of negamycin was achieved within 8 steps and 29% overall yield. This modified synthetic route features in-situ enzymatic promoted asmmetric reduction reaction to introduce chiral hydroxy group at C-5, a late-stage azidination at C-6 to avoid the introduction of explosive azide group in the early stage in previous syntheses. The C-3 aza-chiral center was constructed via Ellman reagent-based asymmetric Mannich reaction. This efficient route is scalable and suitable to establish a library of negamycin analogues for future high-throughput screening.

参考文献

[1] (a) Antibacterial agents in clinical development:an analysis of the antibacterial clinical development pipeline, including tuberculosis, World Health Organization, Geneva, 2017(WHO/EMP/IAU/2017.12). License:CCBY-NC-SA 3.0 IGO.
(b) Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L. Nat. Rev. Drug Discovery 2007, 6, 29.
[2] (a) Kupferschmidt, K. Science 2016, 352, 758.
(b) Liu, Y.; Li, R.; Xiao, X.; Wang, Z. Crit. Rev. Microbiol. 2019, 45, 301.
[3] World Health Organization WHO Annual Report on Global Priority List of Antibiotic-Resistant Bacteria, 2017.
[4] (a) Hamada, M.; Takeuchi, T.; Kondo, S.; Ikeda, Y.; Naganawa. H. J. Antibiot. 1970, 23, 170.
(b) Kondo, S.; Shibahara, S.; Takahashi, S.; Maeda, K.; Umezawa, H. J Am Chem Soc. 1971, 93, 6305.
[5] (a) Uehara, Y.; Hori, M.; Umezawa, H. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 1974, 374, 82.
(b) Uehara, Y.; Hori, M.; Umezawa, H. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 1976, 447, 406.
(c) Uehara, Y.; Hori, M.; Umezawa, H. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 1976, 442, 251.
(d) Mizuno, S.; Nitta, K.; Umezawa, H. J. Antibiot. 1970, 23, 589.
(e) Mizuno, S.; Nitta, K.; Umezawa, H. J. Antibiot. 1970, 23, 581.
[6] (a) Arakawa, M.; Shiozuka, M.; Nakayama Y.; Hara, T.; Hamada, M.; Kondo, A.; Ikeda, D.; Takahashi, Y.; Sawa, R.; Nonomura, Y.; Sheykholeslami, K.; Kondo, K.; Kaga, K.; Suzuki-Miyagoe, Y.; Takeda, S.; Matsuda, R. J. Biochem. 2003, 134, 751.
(b) Allamand, V.; Bidou, L.; Arakawa, M.; Floquet, C.; Shi-ozuka, M.; Paturneau-Jouas, M.; Gartioux, C.; Butler-Browne, G. S.; Mouly, V.; Rousset, J.-P.; Matsuda, R.; Ikeda, D.; Guicheney, P. J. Gene Med. 2008, 10, 217.
(c) Taguchi, A.; Nishiguchi, S.; Shiozuka, M.; Nomoto, T.; Ina, M.; Nojima, S.; Matsuda, R.; Nonomura, Y.; Kiso, Y.; Yamazaki, Y.; Yakushiji, F.; Hayashi, Y. ACS Med. Chem. Lett. 2012, 3, 118.
(d) Taguchi, A.; Hamada, K.; Hayashi, Y. J. Antibiot. 2018, 71, 205.
[7] Select asymmetric synthesis literature:(a) Shibahara, S.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. J. Am. Chem. Soc. 1972, 94, 4353.
(b) Masters, J. J.; Hegedus, L. S. J. Org. Chem. 1993, 58, 4547.
(c) Davies, S. G.; Ichihara, O. Tetrahedron:Asymmetry 1996, 7, 1919.
(d) Olivier, N. B.; Altman, R. B.; Noeske, J.; Basarab, G. S.; Code, E.; Ferguson, A. D.; Gao, N.; Huang, J.; Juette, M. F.; Livchak, S.; Miller, M. D.; Prince, D. B.; Cate, J. H. D.; Buurman, E. T.; Blanchard, S. C. Proc. Natl. Acad. Sci. 2014, 111, 16274.
(e) For a recent summary about the total synthesis of negamycin, see:Zhu, L.; Hong, R. Tetrahedron Lett. 2018, 59, 2112.
[8] (a) Kondo, S.; Iinuma, K.; Yoshida, K.; Yokose, K.; Ikeda, Y.; Shimazaki, M.; Umezawa, H. J. Antibiot. 1976, 29, 208.
(b) Uehara, Y.; Hori, M.; Kondo, S.; Hamada, M.; Umezawa, H. J. Antibiot. 1976, 29, 937.
(c) Raju, B.; Mortell, K.; Anandan, S.; O'Dowd, H.; Gao, H.; Gomez, M.; Hackbarth, C.; Wu, C.; Wang, W.; Yuan, Z.; White, R.; Trias, J.; Patel, D. V. Bioorg. Med. Chem. Lett. 2003, 13, 2413.
(d) Raju, B.; Anandan, S.; Gu, S.; Herradura, P.; O'Dowd, H.; Kim, B.; Gomez, M.; Hackbarth, C.; Wu, C.; Wang, W.; Yuan, Z.; White, R.; Trias, J.; Patel, D. V. Bioorg. Med. Chem. Lett. 2004, 14, 3103.
(e) McKinney, D. C.; Basarab, G. S.; Cocozaki, A. I.; Foulk, M. A.; Miller, M. D.; Ruvinsky, A. M.; Scott, C. W.; Thakur, K.; Zhao, L.; Buurman, E. T.; Narayan, S. ACS Med. Chem. Lett. 2015, 6, 930.
(f) Schmidt, U.; Stäbler, F.; Lieberknecht, A. Synthesis 1992, 482.
[9] Shibahara, S.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. J. Am. Chem. Soc. 1972, 94, 4353.
[10] Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 1278.
[11] Ma, H. M.; Yang, L. L.; Ni, Y.; Zhang, J.; Li, C. X.; Zheng, G. W.; Yang, H. Y.; Xu, J. H. Adv. Synth. Catal. 2012, 354, 1765.
[12] (a) Reetz, M. T.; Li, X. G. J. Am. Chem. Soc. 2006, 128, 1044.
(b) Ohkuma, T.; Tsutsumi, K.; Utsumi, N.; Arai, N.; Noyori, R.; Murata, K. Org. Lett. 2007, 9:255.
[13] (a) Xu, J.; Lin, X. I. Chin. J. Org. Chem. 2007, 27, 1473(in Chinese). (许建明, 林贤福, 有机化学, 2007, 27, 1473.)
(b) Liao, X.; Jiang, Y.; Lai, S.; Liu, Y.; Wang, S.; Xiong, X. Chin. J. Org. Chem. 2019, 39, 668(in Chinese). (廖旭, 蒋岩, 赖石林, 刘源岗, 王士斌, 熊兴泉, 有机化学, 2019, 39, 668.)
[14] Müller, M. Angew. Chem., Int. Ed. 2005, 44, 362.
[15] Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 1278.
[16] (a) Tang, T. P.; Ellman, J. A. J. Org. Chem. 2002, 67, 7819.
(b) Siegel C.; Thornton, E. R. J. Am. Chem. Soc. 1989, 111, 5722.
(c) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600.
[17] Makino, K.; Jiang, H.; Suzuki, T.; Hamada, H. Tetrahedron:Asymmetry 2006, 17, 1644.
文章导航

/