研究论文

银催化2-芳基吲哚与马来酰亚胺C—H键烷基化反应

  • 皮超 ,
  • 曲亚平 ,
  • 崔秀灵 ,
  • 吴养洁
展开
  • 郑州大学化学学院 河南省化学生物与有机化学重点实验室 河南省高等学校应用化学重点开放实验室 郑州 450052

收稿日期: 2019-07-26

  修回日期: 2019-10-23

  网络出版日期: 2019-11-01

基金资助

科技部国际合作重点专项(No.2016YFE0132600)资助项目.

Silver-Catalyzed C—H Alkylation of 2-Arylindoles with Maleimides

  • Pi Chao ,
  • Qu Yaping ,
  • Cui Xiuling ,
  • Wu Yangjie
Expand
  • Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052

Received date: 2019-07-26

  Revised date: 2019-10-23

  Online published: 2019-11-01

Supported by

Project supported by the Key International Cooperation Projects from Chinese Ministry of Science and Technology (No. 2016YFE0132600).

摘要

发展了一种银催化高效高区域选择性的2-芳基吲哚C-3位烷基化反应.在温和条件下,能以高达97%的收率得到目标化合物,且该方法操作简单,不需要外加氧化剂.

本文引用格式

皮超 , 曲亚平 , 崔秀灵 , 吴养洁 . 银催化2-芳基吲哚与马来酰亚胺C—H键烷基化反应[J]. 有机化学, 2020 , 40(3) : 740 -747 . DOI: 10.6023/cjoc201907040

Abstract

A highly efficient and regioselective C-3-alkylation of 2-arylindoles with maleimides has been developed using Ag(I) as catalyst. 3-(2-Aryl-1H-indol-3-yl)pyrrolidine-2,5-diones were afforded with high yields (up to 97%) under relatively mild reaction conditions. The method features operational simplicity and avoiding external oxidant.

参考文献

[1] (a) Karamyan, A. J. K.; Hamann, M. T. Chem. Rev. 2010, 110, 4489.
(b) Gupta, L.; Talwar, A.; Chauhan, P. M. S. Curr. Med. Chem. 2007, 14, 1789.
(c) Gul, W.; Hamann, M. T. Life Sci. 2005, 78, 442.
[2] (a) Knight, Z. A.; Shokat, K. M. Chem. Biol. 2005, 12, 621.
(b) Kung, C.; Kenski, D. M.; Krukenberg, K.; Madhani, H. D.; Shokat, K. M. Chem. Biol. 2006, 13, 399.
[3] (a) Okamoto, A.; Nikaido, T.; Ochiai, K.; Takakura, S.; Saito, M.; Aoki, Y.; Ishii, N.; Yanaihara, N.; Yamada, K.; Takikawa, O.; Kawaguchi, R.; Isonishi, S.; Tanaka, T.; Urashima, M. Clin. Cancer Res. 2005, 11, 6030.
(b) Röhrig, U. F.; Majjigapu, S. R.; Vogel, P.; Zoete, V.; Michielin, O. J. Med. Chem. 2015, 58, 9421.
(c) Platten, M.; von Knebel Doeberitz, N.; Oezen, I.; Wick, W.; Ochs, K. Front. Immunol. 2015, 5, 673.
(d) Cong, W.; Wang, L.; Yu, F.; Li, J. Chin. J. Org. Chem. 2018, 38, 2866(in Chinese). (丛文霞, 王莉, 于福强, 李纪兴, 有机化学, 2018, 38, 2866.)
[4] (a) Peifer, C.; Krasowski, A.; Hammerle, N.; Kohlbacher, O.; Dannhardt, G.; Totzke, F.; Schachtele, C.; Laufer, S. J. Med. Chem. 2006, 49, 7549.
(b) Baetlett, S.; Beddard, G. S.; Jackson, R. M.; Kayser, V.; Kilner, C.; Leach, A.; Nelson, A.; Oledzki, P. R.; Parker, P.; Reid, G. D,; Warriner, S. L. J. Am. Chem. Soc. 2005, 127, 11699.
(c) McDonnell, M. E.; Bian, H.; Wrobel, J.; Smith, G. R.; Liang S.; Ma, H.; Reitz, A. B. Bioorg. Med. Chem. Lett. 2014, 24, 1116.
[5] (a) Crider, A. M.; Kolczynski, T. M.; Yates, K. M. J. Med. Chem. 1980, 23, 324.
(b) Chou, T.-C.; Wu, R.-T.; Liao, K.-C.; Wang, C.-H. J. Org. Chem. 2011, 76, 6813.
(c) Shiri, M. Chem. Rev. 2012, 112, 3508.
(d) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
(e) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.
(f) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.
[6] Gunosewoyo, H.; Midzak, A.; Gaisina, I. N.; Sabath, E. V.; Fedolak, A.; Hanania, T.; Brunner, D.; Papadopoulos, V.; Kozikowski, A. P. J. Med. Chem. 2013, 56, 5115.
[7] (a) Peifer, C.; Dannhardt, G. Anticancer Res. 2004, 24, 1545
(b) Peifer, C.; Stoiber, T.; Unger, E.; Totzke, F.; Schachtele, C.; Marmé, D.; Brenk, R.; Klebe, G.; Schollmeyer, D.; Dannhardt, G. J. Med. Chem. 2006, 49, 1271
(c) Ganser, C.; Lauermann, E.; Maderer, A.; Stauder, T.; Kramb, J.-P.; Plutizki, S.; Kindler, T.; Moehler, M.; Dannhardt, G. J. Med. Chem. 2012, 55, 9531.
[8] Crosignani, S.; Bingham, P.; Bottemanne, P.; Cannelle, H.; Cauwenberghs, S.; Cordonnier, M.; Dalvie, D.; Wythes, M. J. Med. Chem. 2017, 60, 9617.
[9] Nakazono, M.; Jinguji, A.; Nanbu, S.; Kuwano, R.; Zheng, Z.; Saita, K.; Oshikawa, Y.; Mikuni, Y.; Murakami, T.; Zhao, Y.; Sasaki, S.; Zaitsu, K. Phys. Chem. Chem. Phys. 2010, 12, 9783.
[10] (a) Hugon, B.; Pfeiffer, B.; Renard, P.; Prudhomme, M. Tetrahedron Lett. 2003, 44, 3935.
(b) Wilson, D.; Li, J. W.; Branda, N. R. ChemMedChem 2017, 12, 284.
(c) Bergman, J.; Desarbre, E.; Koch, E. Tetrahedron 1999, 55, 2363.
(d) Yang, M.; Cao, S.; He, Z. Chin. J. Org. Chem. 2019, 39, 2235(in Chinese). (杨梅, 曹仕轩, 贺峥杰, 有机化学, 2019, 39, 2235.)
[11] (a) Bandini, M.; Melchiorre, P.; Melloni, A.; Umani-Ronchi, A. Synthesis 2002, 1110.
(b) Bartoli, G.; Bartolacci, M.; Bosco, M.; Foglia, G.; Giuliani, A.; Marcantoni, E.; Sambri, L.; Torregiani, E. J. Org. Chem. 2003, 68, 4594.
(c) Arcadi, A.; Bianchi, G.; Chiarini, M.; D’Anniballe, G.; Marinelli, F. Synlett 2004, 944.
(d) Henon, H.; Messaoudi, S.; Hugon, B.; Anozon, F.; Pfeiffer, B.; Prudhomme, M. Tetrahedron 2005, 61, 5599.
(e) Liu, P.; Chen, W.; Ren, K.; Wang, L. Chin. J. Chem. 2010, 28, 2399.
(f) Yang, J.; Zhang, J.; Chen, T. T.; Sun, D. M.; Li, J.; Wu, X. F. Chin. Chem. Lett. 2011, 22, 1391.
[12] An, Y.-L.; Shao, Z.-Y.; Cheng, J.; Zhao, S.-Y. Synthesis 2013, 45, 2719.
[13] An, Y.-L.; Yang, Z.-H.; Zhang, H.-H.; Zhao, S.-Y. Org. Lett. 2016, 18, 152.
[14] (a) Niu, Y.-N.; Yan, Z.-Y.; Gao, G.-L.; Wang, H.-L.; Shu, X.-Z.; Ji, K.-G.; Liang, Y.-M. J. Org. Chem. 2009 74, 2893.
(b) Mohan, D. C.; Rao, S. N.; Adimurthy, S. J. Org. Chem. 2013, 78, 1266.
(c) Wang, C.; Chen, Q.; Guo, Q.; Liu, H.; Xu, Z.; Liu, Y.; Wang, M.; Wang, R. J. Org. Chem. 2016, 81, 5782.
(d) Yang, Z.-H.; Tan, H.-R.; Zhu, J.-N.; Zheng, J.; Zhao, S.-Y. Adv. Synth. Catal. 2018, 360, 1523.
[15] (a) Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888.
(b) Wu, Z.; Pi, C.; Cui, X.; Bai, J.; Wu, Y. Adv. Synth. Catal. 2013, 355, 1971.
(c) Pi, C.; Cui, X.; Liu, X.; Guo, M.; Zhang, H.; Wu, Y. Org. Lett. 2014, 16, 5164.
(d) You, C.; Pi, C.; Wu, Y.; Cui, X. Adv. Synth. Catal. 2018, 360, 4068.
(e) Wang, L.; Xiong, D.; Jie, L.; Yu, C.; Cui, X. Chin. Chem. Lett. 2018, 29, 907.
(f) Yang, Z.; Jie, L.; Yao, Z.; Yang, Z.; Cui, X. Adv. Synth. Catal. 2019, 361, 214.
(g) Yuan, T.; Pi, C.; You, C.; Cui, X.; Du, S.; Wan, T.; Wu, Y. Chem. Commun. 2019, 55, 163.
(h) Pi, C.; Yin, X.; Cui, X.; Ma, Y.; Wu, Y. Org. Lett. 2019, 21, 2081.
(i) Ren, J.; Pi, C.; Wu, Y.; Cui, X. Org. Lett. 2019, 21, 4067.
(j) Shen, Z.; Pi, C.; Cui, X.; Wu, Y. Chin. Chem. Lett. 2019, 30, 1374.
(j) Shi, Z.; Wang, L.; Cui, X. Chin. J. Org. Chem. 2019, 39, 1596(in Chinese). (施兆江, 王连会, 崔秀灵, 有机化学, 2019, 39, 1596.)
[16] The absolute configuration of 3aa (CCDC 1844023) was determined by X-ray crystallographic analysis, and contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Center, 12, Union Road, Cambridge CB21EZ, U.K., deposit@ccdc.cam.ac.uk); fax:+441223336033.
[17] (a) Zhang, F.; Qin, Z.; Kong, L.; Zhao, Y.; Liu, Y.; Li, Y. Org. Lett. 2016, 18, 5150.
(b) Liu, Z.; Vidovic, D. J. Org. Chem. 2018, 83, 5295.
(c) Sekine, K.; Yamada, T. Chem. Soc. Rev. 2016, 45, 4524.
(d) Liu, Z.; Vidovic, D. Chem. Soc. Rev. 2015, 44, 8124.
[18] (a) Yang, Y.; Yu, J.-X.; Ouyang, X.-H.; Li, J.-H. Org. Lett. 2017, 19, 3982.
(b) Sadamitsu, Y.; Komatsuki, K.; Saito, K.; Yamada, T. Org. Lett. 2017, 19, 3191.
(c) Li, F.-L.; Wang, L.; Li, C.-H.; Liu, N.; Dai, B. ACS Omega 2017, 2, 1104.
[19] Chen, W.-L.; Wu, S.-Y.; Mo, X.-L.; Wei, L.-X.; Liang, C.; Mo, D.-L. Org. Lett. 2018, 20, 3527.
[20] (a) Mandal, A.; Sahoo, H.; Dana, S.; Baidya, M. Org. Lett. 2017, 19, 4138.
(b) Liu, S.-L.; Li, Y.; Guo, J.-R.; Yang, G.-C.; Li, X.-H.; Gong, J.-F.; Song, M.-P. Org. Lett. 2017, 19, 4042.
文章导航

/