综述与进展

光催化有机物偶联/芳构化放氢反应研究进展

  • 陈锋 ,
  • 陈浩 ,
  • 吴庆安 ,
  • 罗书平
展开
  • 浙江工业大学化学工程学院 绿色化学合成技术国家重点实验室培育基地 杭州 310014

收稿日期: 2019-09-16

  修回日期: 2019-10-18

  网络出版日期: 2019-11-01

基金资助

国家自然科学基金(No.21376222)和浙江省自然科学基金(No.LY18B060011)资助项目.

Progress on the Photocatalytic Organic Hydrogen-Evolution Coupling/Aromatization Reaction

  • Chen Feng ,
  • Chen Hao ,
  • Wu Qing'an ,
  • Luo Shuping
Expand
  • State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014

Received date: 2019-09-16

  Revised date: 2019-10-18

  Online published: 2019-11-01

Supported by

Project supported by the National Natural Science Foundation of China (No. 21376222) and the Natural Science Foundation of Zhejiang Province (No. LY18B060011).

摘要

光催化氧化还原反应具有绿色、高效、安全等优势,已经在有机化学中得到广泛关注.介绍了基于光催化的偶联/芳构化放氢反应,通过使用光催化剂/催化剂的双催化体系,可用于光催化有机碳-碳和碳-杂原子成键反应,且反应中氢气是唯一的副产物.强调了有机光氧化还原体系的构建与催化机理.

本文引用格式

陈锋 , 陈浩 , 吴庆安 , 罗书平 . 光催化有机物偶联/芳构化放氢反应研究进展[J]. 有机化学, 2020 , 40(2) : 339 -350 . DOI: 10.6023/cjoc201909024

Abstract

The photocatalytic redox reactions have been widely concerned in organic chemistry due to their green, efficiency and safety. In this review, the cross-coupling/aromatization reactions are described based on photocatalytic organic hydrogen-evolution, which can be used to build organic carbon-carbon and carbon-heteroatom bonds by using a photocatalyst/catalyst dual catalytic system. Hydrogen is the only by-product in these reactions. The system and catalytic mechanisms of organic photocatalytic redox reaction are highlighted.

参考文献

[1] Shaw, M. H.; Twilton, J.; MacMillan, D. W. J. Org. Chem. 2016, 81, 6898.
[2] Karkas, M. D.; Porco, J. A., Jr.; Stephenson, C. R. Chem. Rev. 2016, 116, 9683.
[3] Shvydkiv, O.; Nolan, K.; Oelgemoller, M. Beilstein J. Org. Chem. 2011, 7, 1055.
[4] Xuan, J.; Xiao, W. -J. Angew. Chem. Int. Ed. 2012, 51, 6828.
[5] Luo, S. -P.; Chen, N.-Y.; Sun, Y.-Y.; Xia, L.-M.; Wu, Z.-C. Junge, H.; Beller, M.; Wu, Q.-A. Dyes Pigm. 2016, 134, 580.
[6] Takeda, H.; Ishitani, O., Coord. Chem. Rev. 2010, 254, 346
[7] Chen J.-X.; Miao, Y.-Y. Nat. Gas Chem. Ind. 2019, 44, 116(in Chinese). (陈嘉欣, 苗媛媛, 天然气化工(C1化学与化工), 2019, 44, 116.)
[8] Xie, J.; Jin, H.; Xu, P.; Zhu, C. Tetrahedron Lett. 2014, 55, 36.
[9] Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349.
[10] Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[11] Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.
[12] Tamao, K. K. Y.; Sumitani, K. J. Am. Chem. Soc. 1972, 26, 9268.
[13] Hiyama, T.; Sawahata, M.; Obayashi, M. Chem. Informationsdienst 1984, 15.
[14] Zhang, W.; Dai, J.; Xu, H. Chin. J. Org. Chem. 2015, 35, 1820(in Chinese). (张文曼, 戴建军, 许华建, 有机化学, 2015, 35, 1820.)
[15] Cao, S.-S. Chem. Bull. 2019, 82, 684(in Chinese). (曹莎莎, 化学通报, 2019, 82, 684.)
[16] Yuan, D.; Zhang, Q.; Liao, S.; Xiong, W.; Yuan, L.; Cai, Q.; Yang, M.; Li, X.; Jiang, Y.; Liu, Y.; Li, P.; Xu, Z.; Sun, P.; Geng, H. Chin. J. Org. Chem. 2015, 35, 961(in Chinese). (袁定重, 张庆华, 廖世军, 熊文文, 元利刚, 蔡奇胜, 杨梦梅, 李雄, 蒋烨佳, 刘妍, 李萍, 徐贞帅, 孙盼盼, 耿会玲, 有机化学, 2015, 35, 961.)
[17] Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem., Int. Ed. 2014, 53, 74.
[18] Tang, S.; Zeng, L.; Lei, A.-W. J. Am. Chem. Soc. 2018, 140, 13128.
[19] Chen, B.; Wu, L.-Z.; Tung, C.-H. Acc. Chem. Res. 2018, 51, 2512.
[20] Zhong, J.-J.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2017, 75, 34(in Chinese). (钟建基, 孟庆元, 陈彬, 佟振合, 吴骊珠, 化学学报, 2017, 75, 34.)
[21] Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2013, 135, 19052.
[22] Zhang, P., Ph.D. Dissertation, Dalian University of Technology, Dalian, 2011(in Chinese). (张盼, 博士论文, 大连理工大学, 大连, 2011.)
[23] Schrauzer, G. N. Acc. Chem. Res. 1968, 1, 97.
[24] Connolly, P.; Espenson, J. H. Inorg. Chem. 1986, 25, 2684.
[25] Pantani, O.; Naskar, S.; Guillot, R.; Millet, P.; Anxolabéhère-Mallart, E.; Aukauloo, A. Angew. Chem., Int. Ed. 2008, 47, 9948.
[26] Razavet, M.; Artero, V.; Fontecave, M. Inorg. Chem. 2005, 44, 4786.
[27] Baffert, C.; Artero, V.; Fontecave, M., Inorg. Chem. 2007, 46, 1817.
[28] Hu, X.; Brunschwig, B. S.; Peters, J. C. J. Am. Chem. Soc. 2007, 129, 8988.
[29] Zhong, J.-J.; Meng, Q. Y.; Liu, B.; Li, X.-B.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2014, 16, 1988.
[30] Zhong, J. J.; Wu, C.-J.; Meng, Q. Y.; Gao, X.-W.; Lei, T.; Tung, C. H.; Wu, L.-Z. Adv. Synth. Catal. 2014, 356, 2846.
[31] Gao, X. W.; Meng, Q.-Y.; Li, J.-X.; Zhong, J.-J.; Lei, T.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2015, 5, 2391.
[32] Liu, C.; Zhang, H.; Shi, W.; Lei, A.-W. Chem. Rev. 2011, 111, 1780.
[33] Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
[34] Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
[35] Zhang, S.-Y.; Zhang, F.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2011, 40, 1937.
[36] Li, Z.; Yu, R.; Li, H. Angew. Chem., Int. Ed. 2008, 120, 7607.
[37] Liu, D.; Liu, C.; Li, H.; Lei, A.-W. Chem. Commun. 2014, 50, 3623.
[38] Xiang, M.; Meng, Q.-Y.; Li, J.-X.; Zheng, Y.-W.; Ye, C.; Li, Z.-J.; Chen, B.; Tung, C. H.; Wu, L.-Z. Chemistry 2015, 21, 18080
[39] Rezaei, Z.; Firouzabadi, H.; Iranpoor, N.; Ghaderi, A.; Jafari, M. R.; Jafari, A. A.; Zare, H. R. Eur. J. Med. Chem. 2009, 44, 4266.
[40] Turski, L.; Schneider, H. H.; Neuhaus, R. Restor. Neurol. Neurosci. 2000, 17, 45.
[41] Niu, L.; Wang, S.; Liu, J.; Yi, H.; Liang, X.-A.; Liu, T.; Lei, A.-W. Chem. Commun. 2018, 54, 1659.
[42] Hu, X.; Zhang, G.-D.; Bu, F.-X.; Luo, X.; Yi, K.-B.; Zhang, H.; Lei, A.-W. Chem. Sci. 2018, 9, 1521.
[43] Hu, X.; Zhang, G.; Bu, F.; Lei, A. Angew. Chem., Int. Ed. 2018, 57, 1286.
[44] Zhang, G.; Lin, Y.; Luo, X.; Hu, X.; Chen, C.; Lei, A.-W. Nat. Commun. 2018, 9, 1225.
[45] Schlogl, R. Angew. Chem., Int. Ed. 2003, 42, 2004.
[46] Karam, A. R.; Catarí, E. L.; López-Linares, F.; Agrifoglio, G.; Albano, C. L.; Díaz-Barrios, A.; Lehmann, T. E. Appl. Catal. 2005, 280, 165.
[47] Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.
[48] Vicentini, C. B.; Romagnoli, C.; Andreotti, E. Agric. Food Chem. 2007, 55, 10331.
[49] Niu, L.; Yi, H.; Wang, S.; Liu, T.; Liu, J.; Lei, A.-W. Nat. Commun. 2017, 8, 14226.
[50] Marson, C. M. Chem. Soc. Rev. 2011, 40, 5514.
[51] Baviskar, A. T.; Amrutkar, S. M.; Trivedi, N.; Chaudhary, V.; Nayak, A.; Guchhait, S. K.; Banerjee, U. C.; Bharatam, P. V.; Kundu, C. N. ACS Med. Chem. Lett. 2015, 6, 481.
[52] Chen, H.; Yi, H.; Tang, Z.; Bian, C.; Zhang, H.; Lei, A.-W. Adv. Synth. Catal. 2018, 360, 3220.
[53] Niu, L.; Liu, J.; Yi, H.; Wang, S.; Liang, X.-A.; Singh, A. K.; Chiang, C.-W.; Lei, A.-W. ACS Catal. 2017, 7, 7412.
[54] Janicki, S. Z.; Schuster, G. B. J. Am. Chem. Soc. 1995, 117, 8524.
[55] Somei, M.; Yamada, F. J. Nat. Prod. 2004, 21, 278.
[56] Somei, M.; Yamada, F. J. Nat. Prod. 2005, 22, 73.
[57] Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489.
[58] Wu, C.-J.; Meng, Q.-Y.; Lei, T.; Zhong, J.-J.; Liu, W.-Q.; Zhao, L.-M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2016, 6, 4635.
[59] Petersen, A. R.; Taylor, R. A.; Vicente-Hernandez, I.; Mallender, P. R.; Olley, H.; White, A. J.; Britovsek, G. J. J. Am. Chem. Soc. 2014, 136, 14089.
[60] Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
[61] Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A.-W. Chem. Rev. 2015, 115, 12138.
[62] Zhang, M.-L.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. Org. Chem. Front. 2018, 5, 749.
[63] Sun, Q, W. R.; Cai, S. J. Med. Chem. 2011, 54, 1126.
[64] Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A.-W. J. Am. Chem. Soc. 2015, 137, 9273.
[65] Welsch, M. E.;, Snyder, S. A., Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
[66] Zhao, Q.-Q.; Hu, X.-Q.; Yang, M.-N.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2016, 52, 12749.
[67] Tian, W.-F.; Wang, D.-P.; Wang, S.-F.; He, K.-H.; Cao, X.-P.; Li, Y. Org. Lett. 2018, 20, 1421.
[68] Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
[69] Voica, A. F.; Mendoza, A.; Gutekunst, W. R.; Fraga, J. O.; Baran, P. S. Nat. Chem. 2012, 4, 629.
[70] Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 352.
[71] Hoyano, J. K.; Graham, W. A. G. J. Am. Chem. Soc. 1982, 104, 3723.
[72] Buist, P. H. Nat. Prod. Rep. 2004, 21, 249.
[73] Breslow, R.; Baldwin, S.; Flechtner, T.; Kalicky, P.; Liu, S.; Washburn, W. J. Am. Chem. Soc. 1973, 95, 3251.
[74] Bigi, M. A.; Reed, S. A.; White, M. C. Nat. Chem. 2011, 3, 216.
[75] West, J. G.; Huang, D.; Sorensen, E. J. Nat. Commun. 2015, 6, 10093.
[76] He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 3080.
[77] Sahoo, M. K.; Balaraman, E. Green Chem. 2019, 21, 2119.
[78] Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204.
[79] Fuse, H.; Kojima, M.; Mitsunuma, H.; Kanai, M. Org. Lett. 2018, 20, 2042.
文章导航

/