研究简报

白藜芦醇、白皮杉醇和赤松素的合成

  • 张静静 ,
  • 姚明 ,
  • 李立 ,
  • 桑大永 ,
  • 熊航行 ,
  • 刘生鹏
展开
  • a 武汉工程大学化工与制药学院 武汉 430205;
    b 荆楚理工学院化工与药学院 荆门 448000

收稿日期: 2019-08-09

  修回日期: 2019-10-08

  网络出版日期: 2019-11-07

基金资助

湖北省高校优秀中青年科技创新团队(No.T201719)资助项目.

Synthesis of Resveratrol, Piceatannol and Pinosylvin

  • Zhang Jingjing ,
  • Yao Ming ,
  • Li Li ,
  • Sang Dayong ,
  • Xiong Hangxing ,
  • Liu Shengpeng
Expand
  • a School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205;
    b College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen 448000

Received date: 2019-08-09

  Revised date: 2019-10-08

  Online published: 2019-11-07

Supported by

Project supported by the Science Technology Foundation for Creative Research Group of Hubei Department of Education (No. T201719).

摘要

研究了白藜芦醇、赤松素和白皮杉醇的一种简便合成方法.二苯乙烯类化合物在铝和碘的作用下实现双键顺反异构和芳甲醚甲基的脱除,实现白藜芦醇、赤松素和白皮杉醇的高效合成,反应的总收率分别为68%,78%和56%.反应溶剂过滤后可以再次使用.通过量子化学计算和控制实验认为碘自由基可能是脱甲基过程中导致双键顺反异构的关键因素.

本文引用格式

张静静 , 姚明 , 李立 , 桑大永 , 熊航行 , 刘生鹏 . 白藜芦醇、白皮杉醇和赤松素的合成[J]. 有机化学, 2020 , 40(4) : 1062 -1067 . DOI: 10.6023/cjoc201908014

Abstract

A convenient method for the practical synthesis of resveratrol, piceatannol and pinosylvin is described. Resveratrol, pinosylvin and piceatannol can be achieved through a simultaneous demethylation and isomerization process from stilbenes with the aid of aluminum and iodine. The overall yields of the reaction were 68%, 78% and 56% (based on aromatic aldehyde). The solvent of the reaction can be reused after filtered. At the same time, quantum chemical calculations and control experiments show that iodine radical may be the key factor leading to cis-trans isomerization of double bond in the process of demethylation.

参考文献

[1] (a) Filippis, B. D.; Ammazzalorso, A.; Amoroso, R.; Giampietro, L. Drug Dev. Res. 2019, 80, 285.
(b) Keylor, M. H.; Matsuura, B. S.; Stephenson, C. R. Chem. Rev. 2015, 115, 8976.
(c) Si, J.-Y. Nat. Prod. Res. Dev. 1994, 6, 71(in Chinese). (斯建勇, 天然产物研究与开发, 1994, 6, 71.)
[2] Chen, G. H.; Webster, J. M.; Li, J. X.; Hu, K. J.; Zhu, J. WO 042231, 2001[Chem. Abstr. 2001, 135, 45986.]
[3] (a) Quideau, S.; Deffieux, D.; Pouysegu, L. Angew. Chem., Int. Ed. 2012, 51, 6824.
(b) Gao, H.; Zheng, X.; Qi, Y.; Wang S.; Wan C.; Rao, G.; Mao, Z. Chin. J. Org. Chem. 2018, 38, 648(in Chinese). (高慧, 郑喜, 祁燕, 王斯, 万春平, 饶高雄, 毛泽伟, 有机化学, 2018, 38, 648.)
[4] (a) Becker, K. B. Synthesis 1983, 341.
(b) Zhao, S.; Yu, Y.; Zhang, Y. Chin. J. Org. Chem. 2013, 33, 1851.
(c) Khan, Z. A.; Iqbal, A.; Shahzad, S. A. Mol. Diversity 2017, 21, 483.
[5] (a) Li, Q.; Shah, Z.; Qu, J. Kang, Y. J. Org. Chem. 2018, 83, 296.
(b) Srivastava, V. Catal. Lett. 2017, 147, 693.
(c) Zou, Y.; Huang, Q.; Huang, T.; Ni, Q.; Zhang, E.; Xu, T.; Yuan, M.; Li, J. Org. Biomol. Chem. 2013, 11, 6867.
(d) Gray, E. E.; Rabenold, L. E.; Goess, B. C. Tetrahedron Lett. 2011, 52, 6177.
(e) Sun, H.-Y.; Xiao, C.-F.; Cai, Y.-C.; Chen, Y.; Wei, W.; Liu, X.-K.; Lv, Z.-L.; Zou, Y. Chem. Pharm. Bull. 2010, 58, 1492.
(f) Alonso, F.; Riente, P.; Yus, M. Eur. J. Org. Chem. 2009, 34, 6034.
(g) Dong, D. J.; Li, H. H.; Tian, S. K. J. Am. Chem. Soc. 2010, 132, 5018.
(h) Alonso, F.; Riente, P.; Yus, M. Tetrahedron Lett. 2009, 50, 3070.
(i) McNulty, J.; Das, P. Eur. J. Org. Chem. 2009, 24, 4031.
(j) Roberti, M.; Pizzirani, D.; Simoni, D.; Rondanin, R.; Baruchello, R.; Bonora, C.; Buscemi, F.; Grimaudo, S.; Tolomeo, M. J. Med. Chem. 2003, 46, 3546.
(k) Ali, M. A.; Kondo, K.; Tsuda, Y. Chem. Pharm. Bull. 1992, 40, 1130.
[6] (a) Tian, J.; Yue, H.; Yang, P.; Sang, D. ChemistrySelect 2019, 4, 38.
(b) Sang, D.; Tian, J.; Tu, X.; He, Z.; Yao, M. Synthesis 2019, 51, 704.
(c) Sang, D.; Tu, X.; Tian, J.; He, Z.; Yao, M. ChemistrySelect 2018, 3, 10103.
(d) Sang, D.; Yao, M.; Tian, J.; Chen, X.; Zhan, H.; You, L. Synlett 2017, 28, 138.
[7] (a) Li, G.; Zou, Y.; Zhang, X. J. Chem. Res. 2007, 657.
(b) Sun, H.; Xiao, C.; Wei, W.; Chen, Y.; Lu, Z.; Zou, Y. Chin. J. Org. Chem. 2010, 30, 1574(in Chinese). (孙洪宜, 肖春芬, 魏文, 陈煜, 吕泽良, 邹永, 有机化学, 2010, 30, 1574.)
[8] (a) van Rossum, A. J. G.; de Bruin, A. H. M.; Nivard, R. J. F. J. Chem. Soc., Perkin Trans. 2 1975, 1036.
(b) Giacomelli, G.; Lardicci, L.; Saba, A. J. Chem. Soc., Perkin Trans. 1 1978, 314.
(c) Ali, M. A.; Tsuda, Y. Chem. Pharm. Bull. 1992, 40, 2842.
(d) Gaukroger, K.; Hadfield, J. A.; Hepworth, L. A.; Lawrence, N. J.; McGown, A. T. J. Org. Chem. 2001, 66, 8135.
(e) Hepprele, S. S.; Li, Q.; East, A. L. L. J. Phys. Chem. A 2005, 109, 10975.
(f) Deshpande, P. B.; Kumar, S.; Palanisamy, U.; Andrew, G. US 6844471, 2005.
(g) Li, Q.; Shah, Z.; Qu, J.; Kang, Y. J. Org. Chem. 2018, 83, 296.
(h) Settle, A. E.; Berstis, L.; Zhang, S.; Rorrer, N. A.; Hu, H.; Richards, R. M.; Beckham, G. T.; Crowley, M. F.; Vardon, D. R. ChemSusChem 2018, 11, 1768.
[9] (a) Das, M.; O'Shea, D. F. Org. Lett. 2016, 18, 336.
(b) Simoni, D.; Roberti, M.; Invidiata, F. P.; Aiello, E.; Aiello, S.; Marchetti, P.; Baruchello, R.; Eleopra, M.; Cristina, A. D.; Grimaudo, S.; Gebbia, N.; Crosta, L.; Dieli, F.; Tolomeo, M. Bioorg. Med. Chem. Lett. 2016, 16, 3245.
(c) Zaki, M. A.; Balachandran, P.; Khan, S.; Wang, M.; Mohammed, R.; Hetta, M. H.; Pasco, D. S.; Muhammad, I. J. Nat. Prod. 2013, 76, 679.
(d) Antonioletti, R.; Bonadies, F.; Ciammaichella, A.; Viglianti, A. Tetrahedron 2008, 64, 4644.
[10] (a) Sun, H.-Y.; Xiao, C.-F.; Cai, Y.-C.; Chen, Y.; Wei, W.; Liu, X.-K.; Lv, Z.-L.; Zou, Y. Chem. Pharm. Bull. 2010, 58, 1492.
(b) Jayatilake, G. S.; Jayasuriya, H.; Lee, E. S.; Koonchanok, N. M.; Geahlen, R. L.; Ashendel, C. L.; McLaughlin, J. L.; Chang, C. J. J. Nat. Prod. 1993, 56, 1805.
(c) Uzura, S.; Sekine-Suzuki, E.; Nakanishi, I.; Sonoda, M.; Tanimori, S. Bioorg. Med. Chem. Lett. 2016, 26, 3886.
文章导航

/