研究论文

Zn/Y双金属接力催化:一锅法分子内环异构化/分子间阿尔德-烯反应构建α-羟基酰胺噁唑衍生物

  • 张硕 ,
  • 楼建芳 ,
  • 王佳睿 ,
  • 宋子贺 ,
  • 彭丹 ,
  • 王峰 ,
  • 闫志旺 ,
  • 崔仕麒 ,
  • 刘一帆 ,
  • 牟秋红 ,
  • 李金辉
展开
  • a 齐鲁工业大学(山东省科学院)山东省科学院新材料研究所 山东省特种含硅新材料重点实验室 济南 250014;
    b 齐鲁工业大学(山东省科学院)化学与制药工程学院 济南 250353;
    c 山东农业大学食品科学与工程学院 山东泰安 271018

收稿日期: 2019-09-02

  修回日期: 2019-10-23

  网络出版日期: 2019-11-07

基金资助

山东省自然科学基金(No.ZR2017BB033)、山东省科学院青年基金(No.2018QN0030)、国家自然科学基金(No.51503118)资助项目.

Zn/Y Bimetallic Relay Catalysis: One Pot Intramolecular Cyclo-isomerization/Intermolecular Alder-Ene Reaction toward Oxazole α-Hydroxy Amide Derivatives

  • Zhang Shuo ,
  • Lou Jianfang ,
  • Wang Jiarui ,
  • Song Zihe ,
  • Peng Dan ,
  • Wang Feng ,
  • Yan Zhiwang ,
  • Cui Shiqi ,
  • Liu Yifan ,
  • Mu Qiuhong ,
  • Li Jinhui
Expand
  • a Shandong Provincial Key Laboratory for Special Silicone-Containing Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014;
    b School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353;
    c College of Food Science and Engineering, Shandong Agricultural University, Taian 271018

Received date: 2019-09-02

  Revised date: 2019-10-23

  Online published: 2019-11-07

Supported by

Project supported by the Shandong Provincial Natural Science Foundation (No. ZR2017BB033), the Youth Science Funds of Shandong Academy of Sciences (No. 2018QN0030) and the National Natural Science Foundation of China (No. 51503118).

摘要

报道了一种新型的Zn/Y双金属接力催化的串联反应,该方法通过Zn(OTf)2和Y(OTf)3接力催化,一锅法进行分子内环异构化/分子间阿尔德-烯反应构建α-羟基酰胺噁唑衍生物.产物的形成主要是由Zn(OTf)2活化炔丙基酰胺的叁键发生分子内的环化反应构建噁唑啉中间体,由Y(OTf)3催化1-苄基吲哚啉-2,3-二酮类化合物,继而由噁唑啉中间体与1-苄基吲哚啉-2,3-二酮类化合物发生分子间阿尔德-烯反应,实现了α-羟基酰胺噁唑衍生物的合成.优化部分的对比实验证实,Zn(OTf)2和Y(OTf)3的存在对于该串联反应都是必须条件.所有反应都是将各反应物和试剂一次性加入,在空气氛围下100℃加热进行反应.该方法反应条件简单、原子经济性高、官能团兼容性好,对噁唑衍生物合成具有重要的意义.

本文引用格式

张硕 , 楼建芳 , 王佳睿 , 宋子贺 , 彭丹 , 王峰 , 闫志旺 , 崔仕麒 , 刘一帆 , 牟秋红 , 李金辉 . Zn/Y双金属接力催化:一锅法分子内环异构化/分子间阿尔德-烯反应构建α-羟基酰胺噁唑衍生物[J]. 有机化学, 2020 , 40(3) : 704 -713 . DOI: 10.6023/cjoc201909002

Abstract

A novel tandem metal relay catalytic system of Zn/Y has been successfully developed. By using this unprecedented Zn(OTf)2/Y(OTf)3 bimetallic relay catalytic system, a variety of oxazole α-hydroxy amides derivatives were obtained from easily available N-(propargyl)-arylamides and various 1-benzylindoline-2,3-dione derivatives through intramolecular cycloisomerization/intermolecular Alder-ene reaction under mild conditions. The first step of the one-pot procedure is that Zn(OTf)2 acts as a π acid to activate the triple bond of N-(propargyl)-arylamides, and a subsequent intramolecular 5-exo-dig cyclization forms the oxazoline intermediate. Separately, Y(OTf)3 acts as Lewis acid, then oxazoline intermediate and 1-benzylindoline-2,3-dione derivatives are transformed to the oxazole α-hydroxy amide derivatives in good to excellent yields in an intermolecular Alder-ene reaction. Control experiments in the optimization section disclose the fact that Zn(OTf)2 and Y(OTf)3 are both indispensable for this intramolecular cycloisomerization/intermolecular Alder-ene reaction. Generally, the synthetic reactions run under air atmosphere by heating all the substrates and reagents in one-pot at 100℃. The present method benefits from the distinctive features of simple reaction conditions, high atom economy and broad substrate tolerance. It is of great significance for the synthesis of oxazole derivatives.

参考文献

[1] (a) Wipf, P.; Venkatraman, S. J. Org. Chem. 1996, 61, 6517.
(b) David, N.; Pasceri, R.; Kitson, R. R. A.; Pradal, A.; Moody, C. Chem.-Eur. J. 2016, 22, 10867.
(c) Turchi, I. J.; Dewar, M. J. S. Chem. Rev. 1975, 75, 389.
(d) Meyers, A. I.; Mihelich, E. D. Angew. Chem., Int. Ed. 1976, 15, 270.
(e) Desimoni, G.; Quadrelli, G. F. P. Chem. Rev. 2003, 103, 3119.
(f) Onishi, H. R.; Pelak, B. A.; Gerckens, L. S.; Silver, L. L.; Kahan, F. M.; Chen, M.-H.; Patchett, A. A.; Galloway, S. M.; Hyland, S. A.; Anderson, M. S.; Raetz, C. R. H. Science 1996, 274, 980.
(g) Bergeron, R. J.; Xin, M. G.; Weimar, W. R.; Smith, R. E.; Wiegand, J. J. Med. Chem. 2001, 44, 2469.
(h) Genet, J. P.; Thorimbert, S.; Touzin, A. M. Tetrahedron Lett. 1993, 34, 1159.
(i) Zhou, Q.; Zheng, D. D.; Shi, Y. J.; Yao, W.; Qian, H. W.; Ding, Y.; Wei, Z. H.; Shen, A. B.; Feng, X.; Shi, J.; Dai, H. Chin. J. Org. Chem. 2018, 38, 3318(in Chinese). (周钱, 郑丹丹, 石玉军, 姚炜, 钱宏炜, 丁颖, 魏中昊, 沈爱宝, 冯霞, 石健, 戴红, 有机化学, 2018, 38, 3318.)
(j) Zhou, J. H.; Dai, H.; Qian, H. W.; Du, X. C.; Mao, X. Y.; Shi, Y. J.; Feng, H.; Shi, J.; Yao, Y. Chin. J. Org. Chem. 2018, 38, 2122(in Chinese). (周家华, 戴红, 钱宏炜, 杜显超, 茅心宇, 石玉军, 冯浩, 石健, 姚勇, 有机化学, 2018, 38, 2122.)
(k) Dai, H.; Ding, Y.; Du, X. C.; Yao, W.; Chen, Q. W.; Wang, X. L.; Zhong, S. L.; Cao, X. F.; Shi, Y. J. Chin. J. Org. Chem. 2018, 38, 1755(in Chinese). (戴红, 丁颖, 杜显超, 姚炜, 陈庆文, 王祥龙, 仲苏林, 曹雄飞, 石玉军, 有机化学, 2018, 38, 1755.)
(l) Shi, Y. J.; Du, X. C.; Wang, X. L.; Chen, Q. W.; Li, L.; Dai, H.; Xu, C. Q.; Zhang, J. Y.; Ling, Y. Chin. J. Org. Chem. 2018, 38, 1772(in Chinese). (石玉军, 杜显超, 王祥龙, 陈庆文, 李玲, 戴红, 徐蔡芹, 张敬远, 凌勇, 有机化学, 2018, 38, 1772.)
[2] (a) Haidukewych, D.; Meyers, A. I. Tetrahedron Lett. 1972, 13, 3031.
(b) Meyers, A. I.; Temple, D. L. J. Am. Chem. Soc. 1970, 92, 6644.
(c) Nelson, T. D.; Meyers, A. I. J. Org. Chem. 1994, 59, 2577.
[3] Lahm, G.; Opatz, T. Org. Lett. 2014, 16, 4201.
(b) Wang, H. L.; Shang, M.; Sun, S. Z.; Zhou, Z. L.; Laforteza, N.; Dai, H. X.; Yu, J. Q. Org. Lett. 2015, 17, 1228.
(c) Ling, P. X.; Fang, S. L.; Yin, X. S.; Chen, K.; Sun, B. Z.; Shi, B. F. Chem.-Eur. J. 2015, 21, 17503;
[4] (a) Desimoni, G.; Faita, G.; Jorgensen, K. A. Chem. Rev. 2006, 106, 3561.
(b) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151.
(c) Hargaden, G. C.; Guiry, P. J. Chem. Rev. 2009, 109, 2505.
(d) Gade, L. H.; Bellemin-Laponnaz, S. Coord. Chem. Rev. 2007, 251, 718.
[5] (a) Peng, H.; Akhmedov, N. G.; Liang, Y. F.; Jiao, N.; Shi, X. J. Am. Chem. Soc. 2015, 137, 8912.
(b) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett. 2004, 6, 4391.
(c) Doherty, S.; Knight, J. G.; Hashmi, A. S. K.; Smyth, C. H.; Ward, N. A. B.; Robson, K. J.; Tweedley, S.; Harrington R. W.; Clegg, W. Organometallics 2010, 29, 4139.
(d) Hashmi, A. S. K.; Schuster, A. M.; Rominger, F. J. Org. Chem. 2012, 77, 6394.
(e) Hashmi, A. S. K.; Schuster, A. M.; Schmuck, M.; Rominger, F. Eur. J. Org. Chem. 2011, 2011, 4595.
[6] (a) Saito, A.; Iimura, K.; Hanzawa, Y. Tetrahedron Lett. 2010, 51, 1471.
(b) Beccalli, E. M.; Borsini, E.; Broggini, G.; Palmisano, G.; Sottocornola, S. J. Org. Chem. 2008, 73, 4746.
(c) Arcadi, A.; Cacchi, S.; Cascia, L.; Fabrizi, G.; Marinelli, F. Org. Lett., 2001, 3, 2501
[7] (a) Jin, C.; Burgess, J. P.; Kepler, J. A.; Cook, C. E. Org. Lett. 2007, 9, 1887.
(b) Alhalib, A.; Moran, W. J. Org. Biomol. Chem., 2014, 12, 795.
(c) Zhang, S.; Chen, Y.; Wang, J.; Pan, Y.; Xu, Z.; Tung, C.-H. Org. Chem. Front. 2015, 2, 578
[8] (a) Harmata, M.; Huang, C. Synlett 2008, 1399.
(b) Wong, V. H. L.; White, A. J. P.; Hor, T. S.; Hii, K. K. Adv. Synth. Catal. 2015, 357, 3943.
(c) Hu, Y.; Yi, R.; Wu, F.; Wan, B. J. Org. Chem. 2013, 78, 7714.
[9] (a) Gao, X. H.; Qian, P. C.; Zhang, X. G.; Deng, C. L. Synlett, 2016, 27, 1110;
[10] (a) Wang, B.; Chen, Y.; Zhou, L.; Wang, J.; Tung, C.-H.; Xu, Z. J. Org. Chem. 2015, 80, 12718.
(b) Wang, B.; Chen, Y.; Zhou, L.; Wang, J.; Xu, Z. Org. Biomol. Chem. 2016, 14, 826.
[11] (a) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021.
(b) Maruoka, K.; Hoshino, Y.; Shirasaka, T.; Yamamoto, H. Tetrahedron Lett. 1988, 29, 3967.
(c) Whitesell, J. K.; Bhattacharya, A.; Buchanan, C. M.; Chen, H. H.; Deyo, D.; James, D.; Liu, C. L.; Minto, M. A. Tetrahedron 1986, 42, 2993.
(d) Okachi, T.; Onaka, M. J. Am. Chem. Soc. 2004, 126, 2306.
(e) Hutson, G. E.; Dave, A. H.; Rawal, V. H. Org. Lett. 2007, 9, 3869.
[12] Mikami, K. Pure Appl. Chem. 1996, 68, 639;
[13] Zheng, K.; Shi, J.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2008, 130, 15770.
[14] Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1990, 112, 3949.
[15] Evans, D. A.; Burgey, C. S.; Paras, N. A.; Vojkovsky, T.; Tregay, S. W. J. Am. Chem. Soc. 1998, 120, 5824.
[16] (a) Trost, B. M.; Lee, D. C.; Rise, F. Tetrahedron Lett. 1989, 30, 651.
(b) Trost, B. M.; Czeskis, B. A. Tetrahedron Lett. 1994, 35, 211.
[17] (a) Zhang, S.; Wei, F.; Song, C. L.; Jia, J.; Xu, Z. H. Chin. J. Chem. 2014, 32, 937.
(b) Liang, M.; Zhang, S.; Jia, J.; Tung, C-H.; Wang, J. W.; Xu, Z. H. Org. Lett. 2017, 19, 2526.
(c) Zhang, S.; Xu, Z. L.; Jia, J.; Tung, C-H.; Xu, Z. H. Chem. Commun. 2014, 50, 12084.
(d) Wang, X. H.; Dong, S. L.; Yao, Z. L.; Feng, L.; Daka, P.; Wang, H.; Xu, Z. H. Org. Lett. 2014, 16, 22.
(e) Thirupathi, N.; Wei, F.; Tung, C.-H., Xu, Z. Nat. Commun. 2019, 10, 3158.
(f) Kong, L.; Thirupathi, N.; Jia, J., Xu, Z. Sci. China Chem. 2019, 62, 80.
(f) Gupta, G. R.; Shah, J.; Vadagaonkar, K. S.; Lavekar, A. G.; Kapdi, A. R. Org. Biomol. Chem. 2019, 17, 7596.
(g) Liang, Q. J.; Xu, Y. H.; Loh, T. P. Org. Chem. Front. 2018, 5, 2765.
文章导航

/