综述与进展

铁、钴、镍催化烯烃的硼氢化反应研究进展

  • 孙越 ,
  • 关瑞 ,
  • 刘兆洪 ,
  • 王也铭
展开
  • a 东北师范大学化学学院 长春 130024;
    b 吉林工程技术师范学院化学与工业生物工程交叉学科研究院 长春 130052

收稿日期: 2019-09-26

  修回日期: 2019-11-15

  网络出版日期: 2019-12-19

Recent Advances in Hydroboration of Alkenes Catalyzed by Fe, Co and Ni

  • Sun Yue ,
  • Guan Rui ,
  • Liu Zhaohong ,
  • Wang Yeming
Expand
  • a Department of Chemistry, Northeast Normal University, Changchun 130024;
    b Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052

Received date: 2019-09-26

  Revised date: 2019-11-15

  Online published: 2019-12-19

摘要

烷基硼酸酯类化合物在有机合成、材料化学和医药领域有着广泛的用途,其合成一直是化学工作者的研究热点.其中,过渡金属催化烯烃硼氢化反应是构建烷基硼酸酯类化合物的最有效方法之一.与铑、钌、钯、铱等贵金属催化剂相比,铁、钴、镍催化剂不但价格便宜,而且具有良好的反应活性和区域选择性.主要综述了1994年以来,铁、钴、镍在催化烯烃硼氢化反应方面的研究进展,详细阐述了不同的催化体系在催化活性、反应选择性、底物适用性等方面的特点.

本文引用格式

孙越 , 关瑞 , 刘兆洪 , 王也铭 . 铁、钴、镍催化烯烃的硼氢化反应研究进展[J]. 有机化学, 2020 , 40(4) : 899 -912 . DOI: 10.6023/cjoc201909035

Abstract

The synthesis of alkyl boronic esters has attracted much attention because of their wide applications in organic synthesis, materials and medicines. Transition-metal catalyzed hydroboration of alkenes was one of the most effective methods to construct alkyl boronic esters. Compared with rhodium, ruthenium, palladium, iridium and other precious metal catalysts, iron, cobalt and nickel catalysts were not only low cost, but also they displayed unique reactivity and selectivity. In this paper, the important advances in hydroboration of alkenes catalyzed by iron, cobalt and nickel have been summarized since 1994, including catalytic activity, selectivity and substrate scope of different catalytic systems.

参考文献

[1] Brown, H. C.; Singaram, B. Pure Appl. Chem. 1987, 59, 879.
[2] Stymiest, J. L.; Bagutski, V.; French R. M.; Aggarwal, V. K. Nature 2008, 456, 778.
[3] Bagutski, V.; French R. M.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2010, 49, 5142.
[4] Bull, J. A. Angew. Chem., Int. Ed. 2012, 51, 8930.
[5] Mlynarski, S. N.; Karns, A. S.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 16449.
[6] Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6723.
[7] Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc. 1956, 78, 2582.
[8] Mattraw, H. C.; Erickson, C. E.; Laubengayer, A. W. J. Am. Chem. Soc. 1956, 78, 4901.
[9] McCusker, P. A.; Ashby, E. C.; Makowski, H. S. J. Am. Chem. Soc. 1957, 79, 5179.
[10] Washburn, R. M.; Levens, E.; Albright, C. F.; Billig, F. A.; Cernak, E. S. Adv. Chem. Ser. 1959, 23, 102.
[11] Matteson, D. S.; Liedtke, J. D. J. Am. Chem. Soc. 1965, 87, 1526.
[12] Dhillon, R. S. Hydroboration and Organic Synthesis, Springer Berlin Heidelberg, New York, 2007, pp. 59~99.
[13] Mannig, D.; Noth, H. Angew. Chem., Int. Ed. 1985, 24, 878.
[14] Burgess K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.
[15] Beletskaya, I.; Pelter, A. Tetrahedron 1997, 53, 4957.
[16] Crudden, C. M.; Edwards, D. Eur. J. Org. Chem. 2003, 4695.
[17] Vogels, C. M.; Westcott, S. A. Curr. Org. Chem. 2005, 9, 687.
[18] Carroll, A.-M.; O'Sullivan, T. P.; Guiry, P. J. Adv. Synth. Catal. 2005, 347, 609.
[19] Wu, Y.; Shan, C.; Ying, J.; Su, J.; Zhu, J.; Liu, L. L.; Zhao, Y. Green Chem. 2017, 19, 4169.
[20] Ma, D. H.; Jaladi, A. K.; Lee, J. H.; Kim, T. S.; Shin, W. K.; Hwang, H.; An, D. ACS Omega 2019, 4, 15893.
[21] Li, Y.; Cheng, Y.; Shan, C.; Zhang, J.; Xu, D.; Bai, R.; Qu, L.; Lan, Y. Chin. J. Org. Chem. 2018, 38, 1885(in Chinese). (李园园, 程玉华, 单春晖, 张敬, 徐冬冬, 白若鹏, 屈凌波, 蓝宇, 有机化学, 2018, 38, 1885.)
[22] Zhang, L.; Huang, Z. Synlett 2013, 1745.
[23] Obligacion, J. V.; Chirik, P. J. Nat. Rev. Chem. 2018, 2, 15.
[24] Chen, J.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
[25] Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
[26] Fan, W.; Li, L.; Zhang, G. J. Org. Chem. 2019, 84, 5987.
[27] Wang, Y.; Li, W.; Che, G.; Bi, X.; Liao, P.; Zhang, Q.; Liu, Q. Chem. Commun. 2010, 46, 6843.
[28] Wang, Y.; Bi, X.; Li, D.; Liao, P.; Wang, Y. Yang, J. Zhang, Q. Liu, Q. Chem. Commun. 2011, 47, 809.
[29] Wang, Y.; Bi, X.; Li, W.; Li, D.; Zhang, Q.; Liu, Q.; Ondon, B. S. Org. Lett. 2011, 13, 1722.
[30] Li, Q.; Wang, Y.; Fang, Z.; Liao, P.; Barry, B.; Che, G.; Bi, X. Synthesis 2013, 609.
[31] Sun, B.; Ma, Q.; Wang, Y.; Zhao, Y.; Liao, P.; Bi, X. Eur. J. Org. Chem. 2014, 34, 7552.
[32] Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217.
[33] Correa, A.; Mancheno, O.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108.
[34] Baucer, E. B. Curr. Org. Chem. 2008, 12, 1341.
[35] Greenhalgh, M. D.; Thomas, S. P. Chem. Cat. Chem. 2014, 6, 1520.
[36] Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170.
[37] Mako, T. L.; Byers, J. A. Inorg. Chem. Front. 2016, 3, 766.
[38] Shang, R.; Ilies, L.; Nakamu, E. Chem. Rev. 2017, 117, 9086.
[39] Li, Y.; Hu, Y.; Wu, X. Chem. Soc. Rev. 2018, 47, 172.
[40] Wu, J. Y.; Moreau, B.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 12915.
[41] Cao, Y.; Zhang, Y.; Zhang, L.; Zhang, D.; Leng, X.; Huang, Z. Org. Chem. Front. 2014, 1, 1101.
[42] Zhang, L.; Peng, D.; Leng, X.; Huang, Z. Angew. Chem., Int. Ed. 2013, 52, 3676.
[43] Gilbert-Wilson, R.; Chu, W.-Y.; Rauchfuss, T. B. Inorg. Chem. 2015, 54, 5596.
[44] Espinal-Viguri, M.; Woof, C. R.; Webster, R. L. Chem.-Eur. J. 2016, 22, 11605.
[45] Obligacion, J. V.; Chirik, P. J. Org. Lett. 2013, 15, 2680.
[46] Chen, J.; Xi, T.; Lu, Z. Org. Lett. 2014, 16, 6452.
[47] Tseng, K. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 411.
[48] Zheng, J.; Sortais, J.-B.; Darcel, C. Chem. Cat. Chem. 2014, 6, 763.
[49] Cruz, T. F. C.; Pereira, L. C. J.; Waerenborgh, J. C.; Veiros, L. F.; Gomes. P. T. Catal. Sci. Technol. 2019, 9, 3347.
[50] Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2013, 49, 11230.
[51] Agahi, R.; Challinor, A. J.; Carter, N. B.; Thomas, S. P. Org. Lett. 2019, 21, 993.
[52] Liu, Y.; Zhou, Y.; Wang, H.; Qu, J. RSC Adv. 2015, 5, 73705.
[53] Macnair, A. J.; Millet, C. R. P.; Nichol, G. S.; Ironmonger, A.; Thomas, S. P. ACS Catal. 2016, 6, 7217.
[54] Chen, X.; Cheng, Z.; Lu, Z. Org. Lett. 2017, 19, 969.
[55] Chen, C.; Shen, X.; Chen, J.; Hong, X.; Lu, Z. Org. Lett. 2017, 19, 5422.
[56] Zaidlewicz, M.; Meller, J. Tetrahedron Lett. 1997, 38, 7279.
[57] Obligacion, J. V.; Chirik, P. J. J. Am. Chem. Soc. 2013, 135, 19107.
[58] Zhang, L.; Zuo, Z.; Leng, X.; Huang, Z. Angew. Chem., Int. Ed. 2014, 53, 2696.
[59] Ruddy, A. J.; Sydora, O. L.; Small, B. L.; Stradiotto, M.; Turculet, L. Chem. Eur. J. 2014, 20, 13918.
[60] Docherty, J. H.; Peng, J.; Dominey, A. P.; Thomas, S. P. Nat. Chem. 2017, 9, 595.
[61] Ibrahim, A. D.; Entsminger, S. W.; Fout. A. R. ACS Catal. 2017, 7, 3730.
[62] Pang, M.; Wu, C.; Zhuang, X.; Zhang, F.; Su, M.; Tong, Q.; Tung, C.-H.; Wang, W. Organometallics 2018, 37, 1462.
[63] Cruz, T. F. C.; Lopes, P. S.; Pereira, L. C. J.; Veiros, L. F.; Gomes, P. T. Inorg. Chem. 2018, 57, 8146.
[64] Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z. J. Am. Chem. Soc. 2014, 136, 15501.
[65] Chen, J.; Xi, T.; Ren, X.; Cheng, B.; Guo J.; Lu, Z. Org. Chem. Front. 2014, 1, 1306.
[66] Zhang, H.; Lu, Z. ACS Catal. 2016, 6, 6596.
[67] Teo, W. J.; Ge, S. Angew. Chem., Int. Ed. 2018, 57, 12935.
[68] Duvvuri, K.; Dewese, K. R.; Parsutkar, M. M.; Jing, S. M.; Mehta, M. M.; Gallucci, J. C.; RajanBabu, T. V. J. Am. Chem. Soc. 2019, 141, 7365.
[69] Peng, S.; Yang, J.; Liu, G.; Huang, Z. Sci. China Chem. 2019, 62, 336.
[70] Palmer, W. N.; Diao, T.; Pappas, I.; Chirik, P. J. ACS Catal. 2015, 5, 622.
[71] Reilly, S. W.; Webster, C. E.; Hollis, T. K.; Valle, H. U. Dalton Trans. 2016, 45, 2823.
[72] Peng, J.; Docherty, J. H.; Dominey, A. P.; Thomas, S. P. Chem. Commun. 2017, 53, 4726.
[73] Zhang, G.; Wu, J.; Wang, M.; Zeng, H.; Cheng, J.; Neary, M. C.; Zheng, S. Eur. J. Org. Chem. 2017, 2017, 5814.
[74] Zhang, G.; Wu, J.; Li, S.; Cass, S.; Zheng, S. Org. Lett. 2018, 20, 7893.
[75] Verma, P. K.; Sethulekshmi, A. S.; Geetharani, K. Org. Lett. 2018, 20, 7840.
[76] Tamang, S. R.; Bedi, D.; Shafiei-Haghighi, S.; Smith, C. R.; Crawford, C.; Findlater, M. Org. Lett. 2018, 20, 6695.
[77] Chen, X.; Cheng, Z.; Lu, Z. ACS Catal. 2019, 9, 4025.
[78] Scheuermann, M. L.; Johnson, E. J.; Chirik, P. J. Org. Lett. 2015, 17, 2716.
[79] Ogawa, T.; Ruddy, A. J.; Sydora, O. L.; Stradiotto, M.; Turculet, L. Organometallics 2017, 36, 417.
[80] Chen, X.; Cheng, Z.; Guo, J.; Lu, Z. Nat. Comm. 2018, 9, 3939.
[81] Chong, C. C.; Kinjo, R. ACS Catal. 2015, 5, 3238.
[82] Shegavi, M. L.; Bose, S. K. Catal. Sci. Technol. 2019, 9, 3307.
[83] Tamang, S. R.; Findlater, M. J. Org. Chem. 2017, 82, 12857.
[84] Guo, J.; Chen, J.; Lu, Z. Chem. Commun. 2015, 51, 5725.
[85] King, A. E.; Stieber, S. C. E.; Henson, N. J.; Kozimor, S. A.; Scott, B. L.; Smythe, N. C.; Sutton, A. D.; Gordon, J. C. Eur. J. Inorg. Chem. 2016, 2016, 1635.
[86] Zhang, G.; Zeng, H.; Wu, J.; Yin, Z.; Zheng, S.; Fittinger, J. C. Angew. Chem., Int. Ed. 2016, 55, 14369.
[87] Kabalka, G. W.; Narayana, C.; Reddy, N. K. Synth. Commun. 1994, 24, 1019.
[88] Pereira, S.; Srebnik, M. Tetrahedron Lett. 1996, 37, 3283.
[89] Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 5031.
[90] Lillo, V.; Geier, M. J.; Westcott, S. A.; Fernández, E. Org. Biomol. Chem. 2009, 7, 4674.
[91] Ely, R. J.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 2534.
[92] Ely, R. J.; Morken, J. P. Org. Lett. 2010, 12, 4348.
[93] Ely, R. J.; Yu, Z.; Morken, J. P. Tetrahedron Lett. 2015, 56, 3402.
[94] Touney, E. E.; Hoveln, R. V.; Buttke, C. T.; Freidberg, M. D.; Guzei, I. A.; Schomaker, J. M. Organometallics 2016, 35, 3436.
[95] Li, J.-F.; Wei, Z.-Z.; Wang, Y.-Q.; Ye, M. Green Chem. 2017, 19, 4498.
[96] Kamei, T.; Nishino, S.; Shimada, T. Tetrahedron Lett. 2018, 59, 2896.
[97] Vijaykumar, G.; Bhunia, M.; Mandal, S. K. Dalton Trans. 2019, 48, 5779.
[98] Vijaykumar, G.; Pariyar, A.; Ahmed, J.; Shaw, B. K.; Adhikari, D.; Mandal, S. K. Chem. Sci. 2018, 9, 2817.
[99] Haberberger, M.; Enthaler, S. Chem. Asian J. 2013, 8, 50.
[100] Obligacion, J. V.; Neely, J. M., Yazdani, A. N.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2015, 137, 5855.
[101] Zuo, Z.; Huang, Z. Org. Chem. Front. 2016, 3, 434.
[102] Nakajima, K.; Kato, T.; Nishibayashi, Y. Org. Lett. 2017, 19, 4323.
[103] Gorgas, N.; Alves, L. G.; Stoeger, B.; Martins A. M.; Veiros, L. F.; Kirchner, K. J. Am. Chem. Soc. 2017, 139, 8130.
[104] Ferrand, L.; Lyu, Y.; Rivera-Hernández, A.; Fallon, B. J.; Amatore, M.; Aubert, C.; Petit, M. Synthesis 2017, 49, 3895.
[105] Ben-Daat, H.; Rock, C. L.; Flores, M.; Groy, T. L.; Bowmanb, A. C.; Trovitch, R. J. Chem. Commun. 2017, 53, 7333.
[106] Zuo, Z.; Wen, H.; Liu, G.; Huang, Z. Synlett 2018, 29, 1421.
[107] Li, L.; Liu, E.; Cheng, J.; Zhang, G. Dalton Trans. 2018, 47, 9579.
[108] Wu, J.; Zeng, H.; Cheng, J.; Zheng, S.; Golen, J. A.; Manke, D. R.; Zhang, G. J. Org. Chem. 2018, 83, 16, 9442.
[109] Zhang, G.; Cheng, J.; Davis, K.; Bonifacioa, M. G.; Zajaczkowskia, C. Green Chem. 2019, 21, 1114.
[110] Zhang, G.; Li, S.; Wu, J.; Zeng, H.; Mo, Z.; Davisa, K.; Zheng, S. Org. Chem. Front. 2019, 6, 3228.
文章导航

/