研究论文

镍催化环丁酮肟酯与芳基锌试剂的Negishi偶联反应

  • 帅斌 ,
  • 李兆明 ,
  • 裘晖 ,
  • 方萍 ,
  • 梅天胜
展开
  • 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 分子合成科学卓越中心中国科学院大学 上海 200032

收稿日期: 2019-11-08

  修回日期: 2019-12-11

  网络出版日期: 2019-12-19

基金资助

中国科学院战略性先导科技专项(No.XDB20000000)、国家自然科学基金(Nos.21572245,21772222,21772220)、上海市科委(Nos.17JC1401200,18JC1415600)资助项目.

Nickel-Catalyzed Negishi Coupling of Cyclobutanone Oxime Esters with Aryl Zinc Reagents

  • Shuai Bin ,
  • Li Zhao-Ming ,
  • Qiu Hui ,
  • Fang Ping ,
  • Mei Tian-Sheng
Expand
  • State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032

Received date: 2019-11-08

  Revised date: 2019-12-11

  Online published: 2019-12-19

Supported by

Project supported by the Strategic Priority Research Program (No. XDB20000000), the National Natural Science Foundation of China (Nos. 21572245, 21772222, 21772220), and the Shanghai Committee of Science and Technology (Nos. 17JC1401200, 18JC1415600).

摘要

发展了一种镍催化环丁酮肟酯和芳基锌试剂之间Negishi偶联的方法.镍既作为亚胺自由基的引发剂,也作为芳基锌试剂与烷基自由基偶联反应的催化剂在反应中起作用.本方法可避免使用剧毒的氰化物,且具有很广的底物适应性和官能团兼容性,因此可能是一种具有潜在吸引力的高效合成烷基腈类化合物的新策略.初步的机理研究显示,该反应极可能经历自由基历程.

本文引用格式

帅斌 , 李兆明 , 裘晖 , 方萍 , 梅天胜 . 镍催化环丁酮肟酯与芳基锌试剂的Negishi偶联反应[J]. 有机化学, 2020 , 40(3) : 651 -662 . DOI: 10.6023/cjoc201911016

Abstract

A nickel-catalyzed Negishi coupling of cyclobutanone oxime esters with aryl zinc reagents has been developed, in which nickel serves both as an initiator for imine radicals and a catalyst for the coupling of aryl zinc reagents with oxime esters. The protocol can avoid the use of poisonous cyanide and has broad substrate scope as well as good functional group compatibility. Therefore, this method provides an attractive strategy for the synthesis of valuable nitriles. Preliminary mechanistic studies indicate that a radical pathway is involved in the product formation.

参考文献

[1] (a) Wu, X.; Zhu, C. Chin. J. Chem. 2019, 37, 171.
(b) Li, C.; Zhu, C. Acta Chim. Sinica 2019, 77, 771(in Chinese). (李超忠, 朱晨, 化学学报, 2019, 77, 771.)
(c) Smith, J. M.; Harwood, S. J.; Baran, P. S. Acc. Chem. Res. 2018, 51, 1807.
(d) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.
(e) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58.
[2] For selected reviews on merger of transition metal catalysis with alkyl radical, see: (a) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264.
(b) Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036.
(c) Green, S. A.; Crossley, S. W. M.; Matos, J. L. M.; Shevick, S. L.; Shenvi, R. A. Acc. Chem. Res. 2018, 51, 2628.
(d) Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R. A. Chem. Rev. 2016, 116, 8912.
(e) Liang, K.; Xia, C. Chin. J. Chem. 2017, 35, 255.
(f) Jahn, U. Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions? A Fruitful Interplay Anyway. In Radicals in Synthesis III, Eds.: Heinrich, M.; Gansäuer, A., Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, p. 323.
(g) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
(h) Kochi, J. K. Acc. Chem. Res. 1974, 7, 351.
(i) Zhao, J.; Duan, X.; Guo, L.-N. Chin. J. Org. Chem. 2017, 37, 2498(in Chinese). (赵景峰, 段新华, 郭丽娜, 有机化学, 2017, 37, 2498.)
(j) Chen, D.; Yang, W.; Yao, Y.; Yang, X.; Deng, Y.; Yang, D. Chin. J. Org. Chem. 2018, 38, 2571(in Chinese). (陈董涵, 杨文, 姚永祺, 杨新, 邓颖颖, 杨定乔, 有机化学, 2018, 38, 2571.)
[3] (a) Bour, J. R.; Ferguson, D. M.; McClain, E. J.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2019, 141, 8914.
(b) Camasso, N. M.; Sanford, M. S. Science 2015, 347, 1218.
(c) Tasker, S. Z.; Stanley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
(d) Takahashi, T.; Kanna, K. Modern Organonickel Chemistry, Wiley-VCH, Weinheim, Germany, 2005, pp. 41.
[4] (a) Wang, K.; Kong, W. Chin. J. Chem. 2018, 36, 247.
(b) Fu, G. C. ACS Cent. Sci. 2017, 3, 692.
(c) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587.
(d) Hu, X. Chem. Sci. 2011, 2, 1867.
(e) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525.
[5] For selected recent examples on Ni-catalyzed cross-coupling with alkyl halides, see: (a) Wang, X.; Ma, G.; Peng, Y.; Gong, H. J. Am. Chem. Soc. 2018, 140, 14490.
(b) Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.
(c) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 624.
(d) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 6694.
(e) Fischer, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594.
(f) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726.
(g) Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem., Int. Ed. 1995, 34, 2723.
[6] For selected recent examples on Ni-catalyzed cross-coupling with sulfones, see: (a) Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M. M.; Bi, C.; Che, G.; Bao D-H.; Qiao, W.; Sun, L.; Collins, M. R.; Gallego, G. M.; Mousseau, J. J.; Nuhant, P.; Baran, P. S. Science 2018, 360, 75.
(b) Ariki, Z. T.; Maekawa, Y.; Zambo, M.; Crudden, C. M. J. Am. Chem. Soc. 2018, 140, 78.
(c) Liu, M.; Zheng, Y.; Qiu, G.; Wu, J. Org. Chem. Front. 2018, 5, 2615.
(d) Wu, J.-C.; Gong, L.-B.; Xia, Y.; Song, R.-J.; Xie, Y.-X.; Li, J.-H. Angew. Chem., Int. Ed. 2012, 51, 9909.
[7] For selected recent examples on Ni-catalyzed cross-coupling with redox active esters, see: (a) Ni, S.; Padial, N. M.; Kingston, C.; Baran, P. S. J. Am. Chem. Soc. 2019, 141, 6726.
(b) Chen, T.; Zhang, H.; Mykhailiuk, P. K.; Baran, P. S. Angew. Chem., Int. Ed. 2019, 58, 2454.
(c) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; We, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature, 2017, 545, 213.
(d) Cornella, J.; Edwards, J. T.; Qin, T. Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174.
(e) Qin T.; Cornella, J.; Li, C.; Baran, P. S. Science 2016, 352, 801.
(f) Ye, Y.; Chen, H.; Sessler, J. H.; Gong, H. J. Am. Chem. Soc. 2019, 141, 820.
(g) Huihui, K. M.; Caputo, J. A.; Melchor, Z.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
(h) Wang, P.; Zhao, B.; Yuan, Y.; Shi, Z. Chem. Commun. 2019, 55, 1971.
(i) Yang, L.; Zhang, J-Y.; Duan, X-H.; Gao, P.; Jiao, J.; Guo, L-N. J. Org. Chem. 2019, 84, 8615.
[8] For selected reviews on cycloketone oximes, see: (a) Morcillo, S. P. Angew. Chem., Int. Ed. 2019, 58, 14044.
(b) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569.
(c) Davies, J.; Morcillo, S. P.; Douglas, J. J.; Leonori, D. Chem.- Eur. J. 2018, 24, 12154.
(d) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
[9] Boivin, J.; Fouquet, E.; Zard, S. Z. J. Am. Chem. Soc. 1991, 113, 1055.
[10] Boivin, J.; Schiano, A. M.; Zard, S. Z. Tetrahedron Lett. 1992, 33, 7849.
[11] For selected examples on Ni-catalyzed ring cleavage of cyclobutanone oximes, see: (a) Angelini, L.; Davies, J.; Simonetti, M.; Leonori, D. Angew. Chem., Int. Ed. 2019, 58, 5003.
(b) Tang, Y.-Q.; Yang, J.-C.; Wang, L.; Guo, L.-N. Org. Lett. 2019, 21, 5178.
(c) Gu, Y.-R.; Duan, X.-H.; Yang, L.; Guo, L.-N. Org. Lett. 2017, 19, 5908.
(d) Ding, D.; Lan, Y.; Lin, Z.; Wang, C. Org. Lett. 2019, 21, 2723.
[12] For selected examples on Cu-catalyzed ring cleavage of cyclobutanone oximes, see: (a) Liu, Z.-L.; Shen, H.-G.; Xiao, H.-W.; Li, C.-Z. Org. Lett. 2019, 21, 5201.
(b) Wang, P.-P.; Zhao, B.-L.; Yuan, Y.; Shi, Z.-Z. Chem. Commun. 2019, 55, 1971.
(c) Zhao, B.; Shi, Z.-Z. Angew, Chem., Int. Ed. 2017, 56, 12727.
(d) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 15505.
(e) Zhang, J. Y.; Duan, X. H.; Yang, J. H.; Guo, L. N. J. Org. Chem. 2018, 83, 4239.
(f) Ai, W.-Y; Liu, Y.-Q; Wang, Q.; Liu, Q. Org. Lett. 2018, 20, 409.
[13] For selected examples on other metal-catalyzed ring cleavage of cyclobutanone oximes, see: (a) Zhao, J.-F.; Guo, P.; Duan, X.-H.; Guo, L.-N. Adv. Synth. Catal. 2018, 360, 1775.
(b) Nishimura, T.; Yoshinaka, T.; Nishiguchi, Y.; Uemura, S. Org. Lett. 2005, 7, 2425.
(c) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2000, 122, 12049.
[14] For selected examples on ring cleavage of cyclobutanone oximes via photocatalysis, see: (a) Lu, B.; Cheng, Y.; Chen, L.-Y.; Xiao, W.-J. ACS Catal. 2019, 9, 8159.
(b) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
(c) He, Y.; Anand, D.; Sun, Z.; Zhou, L. Org. Lett. 2019, 21, 3769.
(d) Li, L.-M.; Chen, H.-G.; Mei, M.-J.; Zhou, L. Chem. Commun. 2017, 53, 11544.
(e) Xia, P.-J.; Ye, Z.-P.; Hu, Y.-Z.; Yang, H. Org. Lett. 2019, 21, 2658.
(f) Zhao, B.; Tan, H. Chen, C.; Jiao, N. Shi, Z.-Z. Chin. J. Chem. 2018, 36, 995.
(g) Zhao, B.-L.; Chen, C.; Lv, J.-H.; Shi, Z.-Z. Org. Chem. Front. 2018, 5, 2719.
(h) Shen, X.; Zhao, J.-J.; Yu, S.-Y. Org. Lett. 2018, 20, 5523.
(i) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 10707.
(j) Davies, J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2017, 56, 13361.
[15] (a) Zhang, J.-J.; Duan, X.-H.; Wu, Y.; Guo, L.-N. Chem. Sci. 2019, 10, 161.
(b) Yin, Z.-P.; Rabeah, J.; Brückner, A.; Wu, X.-F. Org. Lett. 2019, 21, 1766.
[16] (a) Shang, R.; Ji, D.-S.; Chu, L.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 4470.
(b) Dalziel, M.-E.; Chen, P.-H.; Carrera, D. E.; Gosselin, F. Org. Lett. 2017, 19, 3446.
(c) López, R.; Palomo, C. Angew. Chem., Int. Ed. 2015, 54, 13170.
[17] Yang, H.-B.; Pathipati, S. R.; Selander, N. ACS Catal. 2017, 7, 8441.
[18] Ding, D.; Wang, C. ACS Catal. 2018, 8, 11324.
[19] (a) Chen, Y.-G.; Shuai, B.; Xu, X.-T.; Li, Y.-Q.; Yang, Q.-L.; Qiu, H.; Zhang, K. Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2019, 141, 3395.
(b) Liu, D.; Ma, H.-X.; Fang, P.; Mei, T.-S. Angew. Chem., Int. Ed. 2019, 58, 5033.
(c) Ma, C.; Zhao, C.-Q.; Xu, X.-T.; Li, Z.-M.; Wang, X.-Y.; Zhang, K.; Mei, T.-S. Org. Lett. 2019, 21, 2464.
(d) Chen, Y.-G.; Shuai, B.; Ma, C.; Zhang, X.-J.; Fang, P.; Mei, T.-S. Org. Lett. 2017, 19, 2969.
[20] During preparing our manuscript, a nickel catalyzed Negishi coupling of oximes using 20% nickel catalyst was recently published: Angelini, L.; Sanz, L. M.; Leonori, D. Synlett 2019, DOI: 10. 1055/s-0039-1690690
[21] (a) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.
(b) Xu, H.-W.; Diccianni, J. B.; Katigbak, J.; Diao, T.-N. J. Am. Chem. Soc. 2016, 138, 4779.
(c) Schley, N. D.; Fu. G. C. J. Am. Chem. Soc. 2014, 136, 16588.
(d) Phapale, V. B.; Cardenas, D. J. Chem. Soc. Rev. 2009, 38, 1598.
(e) Casares, J. A.; Espinet, P.; Fuentes, B.; Salas, G. J. Am. Chem. Soc. 2007, 129, 3508.
[22]
(f) Anderson, T. J.; Jones, G. D.; Vicic, D. A. J. Am. Chem. Soc. 2004, 126, 8100.
[23] (a) Yin, Z.; Rabeah, J.; Brückner, A.; Wu, X.-F. ACS Catal. 2018, 8, 10926.
(b) Yu, X.-Y.; Chen, J.-R.; Wang, Z.-P.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
(c) He, B.-Q.; Yu, X.-Y.; Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 12262.
(d) Wang, P.-Z.; Yu, X.-Y.; Li, C.-Y.; He, B.-Q.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 9925.
(e) Ai, W.; Liu, Y.; Wang, Q.; Lu, Z.; Liu, Q. Org. Lett. 2018, 20, 409.
(f) Nakata, K.; Feng, C.; Tojo, T.; Kobayashi, Y. Tetrahedron Lett. 2014, 55, 5774.
(g) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2011, 13, 1622.
(h) Suga, T.; Shimazu, S.; Ukaji, Y. Org. Lett. 2018, 20, 5389.
(i) Guiard, J.; Rahali, Y.; Praly, J.-P. Eur. J. Org. Chem. 2014, 21, 4461.
(j) Ghosh, A. K.; Martyr, C. D.; Xu, C.-X. Org. Lett. 2012, 14, 2002.
文章导航

/