综述与进展

钴配合物催化硅氢加成反应研究进展

  • 代自男 ,
  • 余泽浩 ,
  • 白赢 ,
  • 厉嘉云 ,
  • 彭家建
展开
  • 杭州师范大学有机硅化学及材料技术教育部重点实验室 杭州 311121

收稿日期: 2019-10-11

  修回日期: 2019-12-06

  网络出版日期: 2020-01-03

基金资助

浙江省自然科学基金(No.LY18B020012)资助项目.

Progress in Catalysis of Hydrosilylation by Cobalt Complexes

  • Dai Zinan ,
  • Yu Zehao ,
  • Bai Ying ,
  • Li Jiayun ,
  • Peng Jiajian
Expand
  • Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121

Received date: 2019-10-11

  Revised date: 2019-12-06

  Online published: 2020-01-03

Supported by

Project supported by the Natural Science Foundation of Zhejiang Province (No. LY18B020012).

摘要

钴元素含量丰富,相较于贵金属而言具有价格低和毒性低的优点,已被应用于众多催化反应中,表现出良好的催化性能,是近年来有机金属催化领域重要的研究热点之一.总结了钴催化剂应用于烯烃、炔烃和羰基化合物等不饱和化合物硅氢加成反应的研究进展,分析了钴配合物在催化反应过程中存在的不足和原因,并对其作为催化剂的应用前景进行了展望.

本文引用格式

代自男 , 余泽浩 , 白赢 , 厉嘉云 , 彭家建 . 钴配合物催化硅氢加成反应研究进展[J]. 有机化学, 2020 , 40(5) : 1177 -1187 . DOI: 10.6023/cjoc201910012

Abstract

Cobalt is abound in the earth and has advantages of low cost and low toxicity. Cobalt complexes have been widely applied as catalysts in numerous catalytic organic reactions, in which the complexes show excellent catalytic performance and have been recognized as a very important research field. The recent progress in the application of cobalt complexes in the catalytic hydrosilylation of alkenes, alkynes, carbonyl compounds and other unsaturated double bond is summarized. Furthermore, the deficiencies of the catalysts have been discussed. At last, the future development and prospects of these complexes as catalysts are also proposed.

参考文献

[1] Marciniec, B.; Gulinski, J.; Urbaniak, W.; Kornetka, Z. W. In Comprehensive Handbook on Hydrosilylation, Pergamon, Oxford, U. K., 1992.
[2] Ojima, I. In the Chemistry of Organic Silicon Compounds, Vol. 1, Wiley, Chichester, U. K., 1989, Chapter 25.
[3] Roy, A. K. Adv. Organomet. Chem. 2007, 55, 1.
[4] Speier, J. L.; Webster, J. A.; Barnes, G. H. J. Am. Chem. Soc. 1957, 79, 974.
[5] Karstedt, B. D. US 3775452, 1973.
[6] Dong, H.; Berke, H. Adv. Synth. Catal. 2009, 351, 1783.
[7] Ojima, I.; Kogure, T.; Nagai, Y. Tetrahedron Lett. 1974, 15, 1889.
[8] Brunner, H.; Becker, R.; Riepl, G. Organometallics 1984, 3, 1354.
[9] Zhang, Q.; Liu, A.; Yu, H.; Fu, Y. Acta Chim. Sinica 2018, 76, 113(in Chinese). (张琪, 刘奥, 于海珠, 傅尧, 化学学报, 2018, 76, 113.)
[10] Yang, X.; Wang, C. Chin. J. Chem. 2018, 36, 1047.
[11] Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1965, 87, 1133.
[12] Sun, J.; Deng, L. ACS Catal. 2016, 6, 290.
[13] Du, X.; Huang, Z. ACS Catal. 2017, 7, 1227.
[14] Obligacion, J. V.; Chirik, P. J. Nat. Rev. Chem. 2018, 2, 15.
[15] Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
[16] Chen, J.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
[17] Zaranek, M.; Pawluc, P. ACS Catal. 2018, 8, 9865.
[18] Magomedov, G. K. I.; Andrianov, K. A.; Shkolnik, O. V.; Izmailov, B. A.; Kalinin, V. N. J. Organomet. Chem. 1978, 149, 29.
[19] Brookhart, M.; Grant, B. E. J. Am. Chem. Soc. 1993, 115, 2151.
[20] Mo, Z.; Liu, Y.; Deng, L. Angew. Chem., Int. Ed. 2013, 52, 10845.
[21] Liu, Y.; Deng, L. J. Am. Chem. Soc. 2017, 139, 1798.
[22] Gao, Y.; Wang, L.; Deng, L. ACS Catal. 2018, 8, 9637.
[23] Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2015, 137, 13244.
[24] Ibrahim, A. D.; Entsminger, S. W.; Zhu, L.; Fout, A. R. ACS Catal. 2016, 6, 3589.
[25] Gorczyński, A.; Zaranek, M.; Witomska, S.; Bocian, A.; Stefankiewicz, A. R.; Kubicki, M.; Patroniak, V.; Pawluć, P. Catal. Commun. 2016, 78, 71.
[26] Raya, B.; Biswas, S.; Rajanbabu, T. V. ACS Catal. 2016, 6, 6318.
[27] Raya, B.; Jing, S.; Balasanthiran, V.; RajanBabu, T. V. ACS Catal. 2017, 7, 2275.
[28] Schuster, C. H.; Diao, T.; Pappas, I.; Chirik, P. J. ACS Catal. 2016, 6, 2632.
[29] Wang, C.; Teo, W. J.; Ge, S. ACS Catal. 2017, 7, 855.
[30] Lee, K. L. Angew. Chem., Int. Ed. 2017, 56, 3665.
[31] Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439.
[32] Cheng, B.; Lu, P.; Zhao, J.; Lu, Z. Chin. J. Org. Chem. 2019, 39, 1704(in Chinese). (程彪, 陆鹏, 赵家金, 陆展, 有机化学, 2019, 39, 1704.)
[33] Wen, H.; Wang, K.; Zhang, Y.; Liu, G.; Huang, Z. ACS Catal. 2019, 9, 1612.
[34] Mo, Z.; Xiao, J.; Gao, Y.; Deng, L. J. Am. Chem. Soc. 2014, 136, 17414.
[35] Zuo, Z.; Yang, J.; Huang, Z. Angew. Chem. 2016, 128, 10997.
[36] Wen, H.; Wan, X.; Huang, Z. Angew. Chem., Int. Ed. 2018, 57, 6319.
[37] Xi, T.; Lu, Z. J. Org. Chem. 2016, 81, 8858.
[38] Guo, J.; Lu, Z. Angew. Chem. 2016, 128, 10993.
[39] Guo, J.; Shen, X.; Lu, Z. Angew. Chem. 2017, 129, 630.
[40] Cheng, Z.; Xing, S.; Guo, J.; Cheng, B.; Hu, L.; Zhang, X.; Lu, Z. Chin. J. Chem. 2019, 37, 457.
[41] Cheng, Z. Chin. J. Chem. 2019, 37, 632.
[42] Guo, J.; Wang, H.; Xing, S.; Hong, X.; Lu, Z. Chem 2019, 5, 881.
[43] Teo, W. J.; Wang, C.; Tan, Y. W.; Ge, S. Angew. Chem., Int. Ed. 2017, 56, 4328.
[44] Wu, C.; Teo, W. J.; Ge, S. ACS Catal. 2018, 8, 5896.
[45] Sang, H.; Hu, Y.; Ge, S. Org. Lett. 2019, 21, 5234.
[46] Zhang, S.; Ibrahim, J. J.; Yang, Y. Org. Lett. 2018, 20, 6265.
[47] Zong, Z.; Yu, Q.; Sun, N.; Hu, B.; Shen, Z.; Hu, X.; Jin, L. Org. Lett. 2019, 21, 5767.
[48] Kong, D.; Hu, B.; Chen, D. Chem.-Asian J. 2019, 14, 2694.
[49] Inagaki, T.; Phong, L.T.; Furuta, A.; Ito, J.; Nishiyama, H. Chem.-Eur. J. 2010, 16, 3090.
[50] Sauer, D. C.; Wadepohl, H.; Gade, L. H. Inorg. Chem. 2012, 51, 12948.
[51] Niu, Q.; Sun, H.; Li, X.; Klein, H. F.; Flork, U. Organometallics 2013, 32, 5235.
[52] Zhou, H.; Sun, H.; Zhang, S.; Li, X. Organometallics 2015, 34, 1479.
[53] Chen, X.; Lu, Z. Org. Lett. 2016, 18, 4658.
[54] Yang, F.; Wang, Y.; Lu, F.; Xie, S.; Qi, X.; Sun, H.; Li, X.; Fuhr, O.; Fenske, D. New J. Chem. 2018, 42, 15578.
文章导航

/