综述与进展

苯并富烯合成方法研究进展

  • 史传星 ,
  • 冯陈国 ,
  • 陈雅丽 ,
  • 张曙盛 ,
  • 林国强
展开
  • a 上海大学理学院 上海 200444;
    b 中国科学院上海有机化学研究所 天然产物有机合成化学重点实验室 上海 200032;
    c 上海中医药大学 创新中药研究院 上海 201203

收稿日期: 2019-10-25

  修回日期: 2019-12-17

  网络出版日期: 2020-01-03

基金资助

国家自然科学基金(Nos.221572253,21772216)、中国科学院战略性先导科技专项(No.XDB20020100)、中国科学院前沿科学重点研究(No.QYZDYSSWSLH026)资助项目.

Recent Advancement in Benzofulvene Synthesis

  • Shi Chuanxing ,
  • Feng Chenguo ,
  • Chen Yali ,
  • Zhang Shusheng ,
  • Lin Guoqiang
Expand
  • a College of Sciences, Shanghai University, Shanghai 200444;
    b CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    c Innovation Research Instutute of Tranditional Chinese Medicine, Shanghai University of Tranditional Chinese Medicine, Shanghai 201203

Received date: 2019-10-25

  Revised date: 2019-12-17

  Online published: 2020-01-03

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21572253, 21772216), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB 20020100), and the Key Research Program of Frontier Science (No. QYZDY-SSWSLH026).

摘要

苯并富烯结构存在于许多天然分子和生物活性分子中,同时此类分子常常作为重要的合成砌块运用于材料科学和金属有机化学等领域.对苯并富烯的合成已进行了大量研究,尤其是近二十年的快速发展,已经发展了系列高效的合成方法.依据关键骨架构建反应引发机制的不同,这些方法大致可分为五大类:热引发或者光催化的双自由基机理的环化反应、过渡金属催化的串联环化反应、亲核或亲电试剂进攻引发的环化反应、自由基引发的环化反应以及酸促进的环化反应.本文将根据上述不同反应类型综述近些年苯富烯合成的研究进展.

本文引用格式

史传星 , 冯陈国 , 陈雅丽 , 张曙盛 , 林国强 . 苯并富烯合成方法研究进展[J]. 有机化学, 2020 , 40(4) : 817 -830 . DOI: 10.6023/cjoc201910029

Abstract

Benzofulvenes were widely found in natural products and bioactive molecules, and also served as important building blocks in material science and transition-metal chemistry. Great efforts have been devoted to the efficient synthesis of these interesting molecules, and rapid advancement has been made in the past two decades. According to the types of the initiation of the reaction, these methods can roughly be classified into five categories:thermal or photochemical cyclization of enyne-al-lenes or enediynes, transition metal-catalyzed sequential cyclization reaction, electrophilic or nucleophilic attack initiated cyclization, radical initiated cyclization and acid promoted cyclization. This review describes the important synthetic methods of benzofulvenes according to their reaction types.

参考文献

[1] Thiele, J. Chem. Ber. 1900, 33, 666.
[2] Yates, P. V. Adv. Alicyclic Chem. 1968, 2, 59.
[3] Simple examples for application, see:(a) Kosaka, Y.; Kitazawa, K.; Inomata, S.; Ishizone, T. ACS Macro Lett. 2013, 2, 164.
(b) Cappelli, A.; Galeazzi, S.; Giuliani, G.; Anzini, M.; Grassi, M.; Lapasin, R.; Grassi, G.; Farra, R.; Dapas, B.; Aggravi, M.; Donati, A.; Zetta, L.; Boccia, A. C.; Bertini, F.; Samperi, F.; Vomero, S. Macromolecules 2009, 42, 2368.
[4] (a) Douglas, A. W.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1995, 36, 3993.
(b) Shanmugam P.; Rajasingh, P. Chem. Lett. 2005, 34, 1494.
[5] (a) Walters, M. J.; Blobaum, A. L.; Kingsley, P. J.; Felts, A. S.; Sulikowski, G. A.; Marnett, L. J. Bioorg. Med. Chem. Lett. 2009, 19, 3271.
(b) Felts, A. S.; Siegel, B. S.; Young, S. M.; Moth, C. W.; Lybrand, T. P.; Dannenberg, A. J.; Marnett, L. J.; Subbaramaiah, K. J. Med. Chem. 2008, 51, 4911.
(c) Korte, A.; Legros, J.; Bolm, C. Synlett 2004, 2397.
(d) Maguire, A. R.; Papot, S.; Ford, A.; Touhey, S.; O'Connor, R.; Clynes, M. Synlett 2001, 41.
[6] (a) Snyder, S. A.; Zografos, A. L.; Lin, Y. Angew. Chem., Int. Ed. 2007, 46, 8186.
(b) Jeffrey, J. L.; Sarpong, R. Tetrahedron Lett. 2009, 50, 1969.
(c) Singer, R. A.; McKinley, J. D.; Barbe, G.; Farlow, R. A. Org. Lett. 2004, 6, 2357.
[7] (a) Cappelli, A.; Galeazzi, S.; Giuliani, G.; Anzini, M.; Donati, A.; Zetta, L.; Mendichi, R.; Aggravi, M.; Giorgi, G.; Paccagnini, E.; Vomero, S. Macromolecules 2007, 40, 3005.
(b) Cappelli, A.; Galeazzi, S.; Giuliani, G.; Anzini, M.; Grassi, M.; Lapasin, R.; Grassi, G.; Farra, R.; Dapas, B.; Aggravi, M.; Donati, A.; Zetta, L.; Boccia, A. C.; Bertini, F.; Samperi, F.; Vomero, S. Macromolecules 2009, 42, 2368.
(c) Cappelli, A.; Paolino, M.; Grisci, G.; Giuliani, G.; Donati, A.; Mendichi, R.; Boccia, A. C.; Botta, C.; Mroz, W.; Samperi, F.; Scamporrino, A.; Giorgi, G.; Vomero, S. J. Mater. Chem. 2012, 22, 9611.
(d) Kosaka, Y.; Kitazawa, K.; Inomata, S.; Ishizone, T. ACS Macro Lett. 2013, 2, 164.
(e) Cappelli, A.; Villafiorita-Monteleone, F.; Grisci, G.; Paolino, M.; Razzano, V.; Fabio, G.; Giuliani, G.; Donati, A.; Mendichi, R.; Boccia, A. C.; Pasini, M.; Botta, C. J. Mater. Chem. C 2014, 2, 7897.
(f) Cappelli, A.; Razzano, V.; Paolino, M.; Grisci, G.; Giuliani, G.; Donati, A.; Mendichi, R.; Samperi, F.; Battiato, S.; Boccia, A. C.; Mura, A.; Bongiovanni, G.; Mroz, W.; Botta, C. Polym. Chem. 2015, 6, 7377.
(g) Kosaka, Y.; Kawauchi, S.; Goseki, R.; Ishizone, T. Macro-molecules 2015, 48, 4421.
(h) Wang, W.; Schlegel, R.; White, B. T.; Williams, K.; Voyloy, D.; Steren, C. A.; Goodwin, A.; Coughlin, E. B.; Gido, S.; Beiner, M.; Hong, K.; Kang, N.-G.; Mays, J. Macromolecules 2016, 49, 2646.
(i) Chen. S.-D.; Li, Q.-P.; Sun, S.-Y.; Ding, Y.; Hu, A.-H. Macromolecules 2017, 50, 534.
[8] (a) Fischer, M.; Oswald, T.; Ebert, H.; Schmidtmann, M.; Beckhaus, R. Organometallics 2018, 37, 415.
(b) Rogers, J. S.; Lachicotte, R. J.; Bazan, G. C. Organometallics 1999, 18, 3976.
[9] Habaue, S.; Sakamoto, H.; Okamoto, Y. Polym. J. 1997, 29, 384.
[10] Jaquith, J. B.; Guan, J.; Wang, S.; Collins, S. Organometallics 1995, 14, 1079.
[11] Yuki, K.; Susumu, K.; Raita, K.; Takashi, I. Macromolecules 2015, 48, 4421.
[12] Grissom, J. W.; Gunawardena, G. U.; Klingberg, D.; Huang, D. Tetrahedron 1996, 52, 6453.
[13] (a) Mers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc. 1989, 111, 8057.
(b) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. Tetrahedron Lett. 1989, 30, 4995.
[14] Matthias, P.; Alexander, W.; Peter, R. S. J. Phys. Chem. A 2001, 105, 9265.
[15] Schmittel, M.; Strittmatter, M.; Kiau, S. Tetrahedron Lett. 1995, 36, 4975.
[16] Schmittel, M.; Kiau, S.; Siebert, T.; Strittmatter, M. Tetrahedron Lett. 1996, 37, 7691.
(b) Schmittel, M.; Maywald, M.; Strittmatter, M. Synlett 1997, 165.
[17] Igor, V. A.; Serguei, V. K. J. Am. Chem. Soc. 2002, 124, 9052
[18] Schmittel, M.; Mahajan, A. A.; Bucher, G.; Bats, J. W. J. Org. Chem. 2007, 72, 2166.
[19] Vavilala, C.; Byrne, N.; Kraml, C. M.; Douglas, M.; Pascal, J. R. J. Am. Chem. Soc. 2008, 130, 13549.
[20] Bucher, G.; Mahajan, A.; Schmittel, M. J. Org. Chem. 2008, 73, 8815.
[21] Tsuchikama, K.; Kasagawa, M.; Hashimoto, Y.; Endo, K.; Shibata, T. J. Organomet. Chem. 2008, 693, 3939.
[22] Tsuchikama, K.; Kasagawa, M.; Endo, K.; Shibata, T. Synlett 2010, 1, 97.
[23] Patureau, F, W.; Besset, T.; Kuhl, T.; Glorius, J. F. J. Am. Chem. Soc. 2011, 133, 2154.
[24] (a) Chinnagolla, R. K.; Jeganmohan, M. Eur. J. Org. Chem. 2012, 417.
(b) Yu, Y.; Wu, Q.; Liu, D.; Hu, L.; Yu, L.; Tan, Z.; Zhu, G. J. Org. Chem. 2019, 84, 7449.
[25] Guo, B.; Zheng, L.Y.; Zheng, Z. L.; Hua, R. M. J. Org. Chem. 2015, 80, 8430.
[26] Raju, S.; Hsiao, H.-C.; Thirupathi, S.; Chen, P.-L.; Chuang, S.-C. Adv. Synth. Catal. 2019, 361, 683.
[27] Dyker, G.; Nerenz, F.; Siemsen, P.; Bubenitschek, P.; Jones, P. G. Chem. Ber. 1996, 1265.
[28] Singer, R. A.; McKinley, J. D.; Barbe, G.; Farlow, R. A. Org. Lett. 2004, 6, 2357.
[29] Furuta, T.; Asakawa, T.; Iinuma, M.; Fujii, S.; Tanaka, K.; Kan, T. Chem. Commun. 2006, 3648.
[30] Abdur Rahman, S. M.; Sonoda, M.; Ono, M.; Miki, K.; Tobe, Y., Org. Lett. 2006, 8, 1197.
[31] Li, C.-K.; Zeng, Y.; Wang, J.-B. Tetrahedron Lett. 2009, 50, 2956.
[32] Ye, S.; Gao, K.; Zhou, H.; Yang, X.; Wu, J. Chem. Commun. 2009, 5406.
[33] (a) Ye, S.-Q.; Yang X.-D.; Wu, J. Chem. Commun. 2010, 46, 2950.
(b) Ye, S.-Q.; Ren, H.; Wu, J. J. Comb. Chem. 2010, 12, 670.
[34] Bryan C. S.; Lautens, M. Org. Lett. 2010, 12, 2754.
[35] Kim, K. H.; Kim, S. H.; Park, B. R.; Kim, J.-N. Tetrahedron Lett. 2010, 51, 3368.
[36] Lim, C. H.; Kim, K. H.; Lim, J. W.; Kim, J. N. Tetrahedron Lett. 2013, 54, 5808.
[37] (a) Wang, W.-Y.; Sun, L. L.; Deng, C. L.; Tang, R.-Y.; Zhang, X.-G. Synthesis 2013, 45, 118.
(b) Zhang, T.; Chen, F.; Zhang, X.-H.; Qian, P.-C.; Zhang, X.-G. J. Org. Chem. 2019, 84, 307.
[38] (a) Álvarez, E.; Miguel, D.; García-García, P.; Fernández-Rodríguez, M. A.; Rodríguez, F.; Sanz, R. Synthesis 2012, 44, 1874.
(b) Alvarez, E.; Nieto Faza, O.; Silva Lopez, C.; Fernandez-Rodri-guez, M. A.; Sanz, R. Chem.-Eur. J. 2015, 21, 12889.
[39] Chen, Z.; Jia, X.; Huang, J.; Yuan, J. J. Org. Chem. 2014, 79, 10674.
[40] Hou, Q. W.; Zhang, Z. H.; Kong, F. J.; Wang, S. Z.; Wang, H. Q.; Yao, Z. J. Chem. Commun. 2013, 49, 695.
[41] Aziz, J.; Brion, J.-D.; Alami, M.; Hamze, A. RSC Adv. 2015, 5, 74391.
[42] Shin, S.; Son, J. Y.; Choi, C.; Kim, S.; Lee, P. H. J. Org. Chem. 2016, 81, 11706.
[43] Zhou, B.; Wu, Z.; Qi, W.; Sun, X.; Zhang, Y. Adv. Synth. Catal. 2018, 360, 4480.
[44] Peng, J.-B.; Wu, F.-P.; Spannenberg, A.; Wu, X.-F. Chem. Eur. J. 2019, 25, 8696.
[45] Borthakur, S.; Baruah, S.; Sarma, B.; Gogoi, S. Org. Lett. 2019, 21, 2768.
[46] (a) Hashmi, A. S. K.; Braun, I.; Noesel, P.; Schaedlich, J.; Wieteck, M.; Rudolph, M.; Rominger, F. Angew. Chem., Int. Ed. 2012, 51, 4456.
(b) Plajer, A; Ahrens, L.; Wieteck, M.; Lustosa, D. M.; Babaahmadi, R.; Yates, B.; Ariafard, A.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem.-Eur. J. 2018, 24, 10766.
[47] Salacz, L.; Girard, N.; Suffert, J.; Blond, G. Molecules 2019, 24, 595.
[48] Whitlock, H. W.; Sandvick, P. E.; Overman, L. E.; Reichardt, P. B. J Org. Chem. 1969, 34, 879.
[49] (a) Schreiner, P. R.; Prall, M.; Lutz, V. Angew. Chem., Int. Ed. 2003, 42, 5757.
(b) Garcia-Garcia, P.; Sanjuan, A. M.; Rashid, M. A.; Martinez-Cuezva, A.; Fernandez-Rodriguez, M. A.; Rodriguez, F.; Sanz, R. J. Org. Chem. 2017, 82, 1155.
[50] Huang, X.; Yang, Y. Org. Lett. 2007, 9, 1667.
[51] Xiao, Q.; Zhu, H.; Li, G.; Chen, Z. Adv. Synth. Catal. 2014, 356, 3809.
[52] Martinelli, C.; Cardone, A.; Pinto, V.; Mastropasqua Talamo, M.; D'Arienzo, M. L.; Mesto, E.; Schingaro, E.; Scordari, F.; Naso, F.; Musio, R.; Farinola, G. M. Org. Lett. 2014, 16, 3424.
[53] König, B.; Pitsch, W.; Klein, M.; Vasold, R.; Prall, M.; Schreiner, P. R. J. Org. Chem. 2001, 66, 1742.
[54] Kovalenko, S. V.; Peabody, S.; Manoharan, M.; Clark, R. J.; Alabugin, I. V. Org. Lett. 2004, 6, 2457.
[55] Peabody, S. W.; Breiner, B.; Kovalenko, S. V.; Patil, S.; Alabugin, I. V. Org. Biomol. Chem. 2005, 3, 218.
[56] Qin, X.-Y.; He, L.; Li, J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2019, 55, 3227.
[57] Cordier, P.; Aubert, C.; Malacria, M.; Lacote, E.; Gandon, V. Angew. Chem., Int. Ed. 2009, 48, 8757.
[58] Sousa, C. M.; Berthet, J.; Delbaere, S.; Coelho P. J. J. Org. Chem. 2014, 79, 5781.
[59] Sai, M.; Matsubara, S. Synlett 2014, 25, 2067.
[60] Warner, A. J.; Enright, K. M.; Cole, J. M.; Yuan, K.; McGough, J. S.; Ingleson, M. J. Org. Biomol. Chem. 2019, 17, 5520.
文章导航

/